Aerospace Engineering Podcast

By Rainer Groh – Aerospace Engineer and Researcher

Listen to a podcast, please open Podcast Republic app. Available on Google Play Store.


Category: Technology

Open in iTunes


Open RSS feed


Open Website


Rate for this podcast

Subscribers: 20
Reviews: 0

Description

Conversations with Aerospace Pioneers

Episode Date
Podcast Ep. #29 – Samson Sky is Building the First Truly Useful Flying Car
56:00
Sam Bousfield is the founder and CEO of Samson Sky, a company that is developing the first truly useful flying car. Sam is an architect by training, but a passion for aviation led him to work on a supersonic aircraft with Boeing. Out of this experience came the idea of building a flying car called the Switchblade. Harking from an architectural background, Sam approached the problem of designing a flying car slightly differently. Rather than asking the question of how you could make a car fly, Sam and his team focused on the architectural question of how a vehicle that can both fly and drive should be designed. Answering this question led the Samson team to some unique design choices, such as a three-wheel layout and wings that stow and swing out from underneath the vehicle. One of the other challenges in designing a flying car is striking the right compromise between on-road and off-road performance. For example, a car should preferably create downforce, while a plane should create lift. To achieve this Samson Sky has made some very clever design choices in terms of the layout and shaping of the Switchblade, as well as the positioning of the wings and centre of gravity, and the use of lightweight composite materials. In our conversation, Sam and I talk about: why it has taken so long for a functional flying car to be built the main design challenges that need to be overcome the changes that need to be made to the vehicle when switching between flying and driving the way that Sam envisions the Switchblade to be used in practice and much, much more. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is brought to you by my patrons on Patreon. Patreon is a way for me to receive regular donations from listeners whenever I release a new episode, and with the help of these generous donors I have been able to pay for much of the expenses, hosting and travels costs that accrue in the production of this podcast. If you would like to support the podcast as a patron, then head over to my Patreon page. There are multiple levels of support, but anything from $1 an episode is highly appreciated. Thank you for your support! This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Samson Sky Webpage Samson Sky Youtube Switchblade Overview Slalom Test Wing Swing Mechanism NBC reports on the Switchblade's transforming tail
Apr 16, 2019
Podcast Ep. #28 – Natilus: the Startup Building Large Autonomous Cargo Drones
37:05
Aleksey Matyushev is the co-founder and CEO of Natilus, a startup headquartered in San Francisco. Natilus has set out to reduce global air freight costs through the use of large autonomous drones, and has moved quickly over the last couple of years to develop a sea-plane prototype to serve as a technology demonstrator. The engineers at Natilus are now moving ahead at full steam to design a land-based freighter drone based on a blended-wing body. As the name suggests, a blended aircraft has no clear demarcation line between wings and fuselage. Advantages of this approach are efficient lift generation aided by the wide airfoil-shaped body, allowing the entire aircraft to generate lift. This means that a blended wing body has better lift-to-drag ratios than a conventional aircraft, resulting in improved fuel efficiency. One particular challenge, however, is that a blended wing body does not feature a vertical and horizontal tail, and this makes controlling the aircraft particularly challenging. In this episode of the Aerospace Engineering Podcast, Aleksey and I talk about: his educational journey to becoming an expert aerodynamicist the technical details of the freighter drone Natilus is designing Natilus’ business model and near-term developments that are in the pipeline Last but not least, Natilus is currently hiring for a number of roles. So if you're interested in working for an innovative, fast-moving company, then head over to their website. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is brought to you by my patrons on Patreon. Patreon is a way for me to receive regular donations from listeners whenever I release a new episode, and with the help of these generous donors I have been able to pay for much of the expenses, hosting and travels costs that accrue in the production of this podcast. If you would like to support the podcast as a patron, then head over to my Patreon page. There are multiple levels of support, but anything from $1 an episode is highly appreciated. Thank you for your support! This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Natilus website Careers page Prototype test of sea-based drone Another interview with Aleksey Fast Company profile of Natilus
Apr 01, 2019
Podcast Ep. #27 – A Masterclass on Friction Welding with TWI’s Bertrand Flipo
36:10
In this episode I am speaking to Bertrand Flipo from The Welding Institute in Cambridge, UK. TWI Ltd has a long history of innovation in welding research, having been established as the British Welding Research Association in 1946. TWI Ltd is a world leader in research on friction welding and has been at the forefront of many modern friction welding processes. Briefly put, friction welding is a joining technique that does not melt the parts to be joined. Instead, two components are rubbed together to create heat through friction, and high pressure is then applied to squeeze the two pieces together. During this process the material plastically deforms and the high pressure causes the components to be fused together. Advantages of the process are fast joining times, typically on the order of a few seconds; relatively small heat-affected zones; and because friction welding techniques are melt-free, the material's microstructure can be maintained. I personally learned a lot during the recording of this episode, and Bertrand and his colleagues were very gracious to introduce me to the ins and outs of friction welding. So in this episode you will learn about: the differences between different friction welding techniques the main advantages of friction welding and the challenges to keep in mind some of the aerospace applications where friction welding is a game-changer and much, much more If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is brought to you by my patrons on Patreon. Patreon is a way for me to receive regular donations from listeners whenever I release a new episode, and with the help of these generous donors I have been able to pay for much of the expenses, hosting and travels costs that accrue in the production of this podcast. If you would like to support the podcast as a patron, then head over to my Patreon page. There are multiple levels of support, but anything from $1 an episode is highly appreciated. Thank you for your support! This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode TWI website Refill Friction Stir Spot Welding Friction Stir Welding of Lightweight Vehicles Linear Friction Welding Friction Welding of Blisks Friction Welding of Eclipse 500 Stringers TWI Youtube channel Slow Motion of Linear Friction Welding Refill Friction Stir Spot Welding Large-scale Friction Stir Welding
Mar 19, 2019
Podcast Ep. #26 – How AERALIS is Designing a New Family of Military Trainer Aircraft
21:20
On this episode I am speaking to Luca Leone who is the Head of Programme of AERALIS, a British startup designing a new class of military trainer and aerobatic jet aircraft. AERALIS have set out to re-invigorate the UK aircraft manufacturing sector with a military trainer that provides an exceptional pilot training experience. AERALIS' design is purposely modular meaning that a basic and an advanced version of the training aircraft are based on one common platform. This reduces costs in engine and airframe maintenance through training and spares commonality and also facilitates a shorter training period for pilots due to similarities between aircraft types. What’s more, AERALIS are developing a fully tailorable flying training system based on configurable cockpits and advanced simulators. In this way, AERALIS aim to not just be an aircraft manufacturer but a company that designs the total flying training experience. In this episode, Luca and I talk about: the features of the basic and advanced trainer aircraft the characteristics of the modular design the AERALIS training ecosystem and much, much more If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is brought to you by my patrons on Patreon. Patreon is a way for me to receive regular donations from listeners whenever I release a new episode, and with the help of these generous donors I have been able to pay for much of the expenses, hosting and travels costs that accrue in the production of this podcast. If you would like to support the podcast as a patron, then head over to my Patreon page. There are multiple levels of support, but anything from $1 an episode is highly appreciated. Thank you for your support! This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode AERALIS website Design Training Ecosystem AERALIS Experience podcast FlightGlobal article on AERALIS
Mar 05, 2019
Podcast Ep. #25 – Vertical Aerospace CCO Michael Darcy on the UK’s First Full-Scale eVTOL and the Growing Urban Mobility Market
26:30
Michael Darcy is the Chief Commercial Officer of the British eVTOL (electric vertical-takeoff-and-landing) company Vertical Aerospace. Vertical Aerospace has set out to change the way we fly short-haul distances and to reduce the time required for end-to-end journeys. Their vision is to develop an intercity air taxi service that gives customers the freedom to fly from local neighbourhood directly to the final destination. To achieve this, Vertical has assembled a world-class team with veteran engineers from Airbus, Boeing, Rolls Royce and leading Formula 1 teams to design a fully certified eVTOL aircraft starting from first principles. Since their founding in 2016, Vertical Aerospace has already built the UK's first full-scale eVTOL aircraft, and is iterating quickly to build the next generation of larger aircraft. One aspect that really stands out in this conversation is that Vertical Aerospace focuses strongly on quickly iterating through the design, manufacture and test cycle to improve their design in the most efficient way. In this episode, Michael and I discuss: Vertical's particular approach to designing eVTOL aircraft how Vertical Aerospace see the electric aviation sector developing and which hurdles need to be overcome by the industry to build certifiable aircraft If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multi-scale modelling program, SwiftComp provides an efficient and accurate tool for modelling aerospace structures and materials featuring anisotropy and heterogeneity. SwiftComp quickly calculates the complete set of effective properties needed for use in macroscopic structural analysis. It also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, considering more design options, and arriving at the best solution more quickly. A no-cost Academic Partner Program is now available for eligible universities. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Vertical Aerospace website Vertical Aerospace Youtube channel Flight footage Profiles by The Verge Flight Global
Feb 18, 2019
Podcast Ep. #24 – Veronica Foreman on Small Satellites and Virgin Orbit’s Air-Launched Rocket System
22:19
Veronica Foreman is a payload engineer at the small-satellite launch provider Virgin Orbit. Before starting her career at Virgin Orbit, Veronica earned several academic accolades including an Outstanding Undergraduate Researcher Award at Georgia Tech, and a Best Masters Thesis award at MIT. What I find especially impressive about her Masters work on small-satellite constellations is that Veronica considered both the design of constellations, as well as the economic and policy challenges to small-satellite mission success. As Virgin Orbit's mission is to be the premier dedicated launch service for small satellites, Veronica has seemingly found the perfect place for her expertise and passion. One of the key features of Virgin Orbit's launch design is its air-launching system that drops the rocket (LauncherOne) from the wing of a Boeing 747 (Cosmic Girl), providing a movable launchpad. As Veronica explains in this episode, this capability provides Virgin Orbit unique advantages in terms of providing a dedicated launch service for small satellites. In this episode of the Aerospace Engineering podcast, Veronica and I discuss: Virgin Orbit's vision the unique advantages and challenges of an air-launched rocket system some of Virgin Orbit's key engineering technologies and the growing importance of satellite constellations If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multi-scale modelling program, SwiftComp provides an efficient and accurate tool for modelling aerospace structures and materials featuring anisotropy and heterogeneity. SwiftComp quickly calculates the complete set of effective properties needed for use in macroscopic structural analysis. It also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, considering more design options, and arriving at the best solution more quickly. A no-cost Academic Partner Program is now available for eligible universities. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Virgin Orbit's homepage Technical details about the LauncherOne rocket Follow Virgin Orbit on Twitter Virgin Orbit YouTube channel Veronica on payload processing 2018 Highlights LauncherOne hot fire Veronica's MIT Master thesis on second-generation LEO satellite constellations
Feb 06, 2019
Podcast Ep. #23 – Samy Libsig on eXalt Aircraft’s Vision of Designing a New Breed of Sport Airplanes
32:40
Samy Libsig is one of the founders of the sport aircraft startup eXalt Aircraft Inc. eXalt currently comprises a team of three engineers that are bringing a unique combination of fresh design thinking and engineering experience to the world of sport airplanes. The vision of eXalt is to turn the sky into a playground with an aircraft that puts the pilot's flying experience in the foreground. This means an aircraft which is fun to fly, economical, maintenance friendly, and environmentally sustainable. Looking at the sport aircraft market, it is easy to notice that aircraft designs haven't evolved appreciably over the last couple of decades. This is probably for a good reason given that the laws of flying are obviously unchanged, and the design principles that worked in the past, are still valid today. But what is particularly fascinating is the manner in which eXalt Aircraft are using proven aerospace technologies and recombining them in novel ways to design an entirely modern aircraft. The result is an airplane that does not feature all of the most recent bells and whistles—just for the sake of using cutting-edge technology—but instead features a pragmatic design where each component has been carefully chosen to serve the company's vision of maximising the pilot experience. As you will hear in this episode, one of the best examples of this is eXalt's choice of a reinforced spaceframe design over an arguably lighter monocoque design. In this episode of the podcast, Samy and I talk about: the origins of eXalt their particular design philosophy some of the key design choices they have made and the near future of the company If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multi-scale modelling program, SwiftComp provides an efficient and accurate tool for modelling aerospace structures and materials featuring anisotropy and heterogeneity. SwiftComp quickly calculates the complete set of effective properties needed for use in macroscopic structural analysis. It also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, considering more design options, and arriving at the best solution more quickly. A no-cost Academic Partner Program is now available for eligible universities. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode eXalt Aircraft's webpages eXalt's Twitter and LinkedIn profiles For angel investors: eXalt's AngelList profile
Jan 29, 2019
Podcast Ep. #22 – Mark Crouchen on Rockwood Composites and Manufacturing Complex Composite Components
28:11
Mark Crouchen is the managing director of Rockwood Composites, a company in the UK that specialises in manufacturing complex composite components using compression and bladder moulding. These manufacturing processes use fibre mats of carbon fibre, glass fibre, Kevlar, or any other material, which are pre-impregnated with a resin matrix and then placed in a mould, where they are cured at elevated temperature with the addition of external or internal pressure. The team at Rockwood has been supplying the aerospace, defense, medical and nuclear industries for over 25 years, with customers ranging from Leonardo Helicopters and the McLaren Formula 1 team to Safran and Facebook’s Aquila internet drone. In 2018, Rockwood won the Innovation in Manufacture award at the Composite UK industry event for their innovative use of advanced composite materials on the Tokomak ST40 nuclear fusion reactor. Composite materials have many benefits in terms of their excellent strength and stiffness at low weight. However, there is a common misconception that metal or ceramic components can easily be replaced one-to-one with composite components. The performance of any composite component is closely linked to the quality of the manufacturing process, and designing and manufacturing quality components is an area where Rockwood Composites particularly excel. In this episode of the podcast, Mark and I talk about: his background in engineering the types of structures that Rockwood Composites manufacture why composites manufacturing is a challenge and the special solution Rockwood found for the Tokomak ST40 fusion reactor If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multi-scale modelling program, SwiftComp provides an efficient and accurate tool for modelling aerospace structures and materials featuring anisotropy and heterogeneity. SwiftComp quickly calculates the complete set of effective properties needed for use in macroscopic structural analysis. It also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, considering more design options, and arriving at the best solution more quickly. A no-cost Academic Partner Program is now available for eligible universities. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Rockwood Composites Rockwood wins Innovation in Manufacture award Rockwood and fusion reactors
Dec 18, 2018
Podcast Ep. #21 – Prof. Paul Withey on Single-Crystal Superalloys for Jet Engine Turbines
29:08
Paul Withey is the Professor of Casting at the School of Metallurgy and Materials of the University of Birmingham, UK. Before joining the University of Birmingham in 2018, Paul worked at Rolls Royce for 21 years developing new superalloys and manufacturing processes for gas turbine components. As an Engineering Associate Fellow, Paul was a member of a select group of the top 100 specialist engineers across all engineering disciplines within Rolls Royce, and in 2015, Paul and his team were awarded the highest technical award within Rolls-Royce; the Sir Henry Royce Award. Paul’s particular expertise lies in investment casting of aerospace metals, especially of high-temperature superalloys used in the hot turbine stages of modern jet engines. Throughout his career at Rolls-Royce, Paul has developed and optimised manufacturing processes for single-crystal turbine blades with a total of 14 patents to his name. Despite phenomenal advances in materials technology, a number of questions with regard to how the turbine blade shape, materials and process parameters interact remain unanswered, and these questions form the basis of Paul’s ongoing research. In this episode, Paul and I discuss: the unique differences between research in academia and industry what single-crystal superalloys are and how they are manufactured why single-crystal superalloys are a critical technology for modern jet engines and the research questions that Paul is currently trying to answer If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multi-scale modelling program, SwiftComp provides an efficient and accurate tool for modelling aerospace structures and materials featuring anisotropy and heterogeneity. SwiftComp quickly calculates the complete set of effective properties needed for use in macroscopic structural analysis. It also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, considering more design options, and arriving at the best solution more quickly. A no-cost Academic Partner Program is now available for eligible universities. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Paul Withey's research profile A brief history of single-crystal superalloys Turbines stresses and turbine blade materials Modelling video of grain selection manufacturing Video about Rolls Royce turbine blades
Nov 27, 2018
Podcast Ep. #20 – Airbus Engineer Oliver Family on the E-Fan X Demonstrator
32:16
Oliver Family is the Overall Aircraft Design Leader of the Airbus E-Fan X demonstrator. The E-Fan X is a hybrid-electric technology demonstrator being developed by Airbus, Rolls-Royce and Siemens based on a British Aerospace 146 regional airliner. The driver behind the E-Fan X demonstrator is that current aircraft designs have converged to a near-optimum, and with existing technologies, it is difficult to meet the stringent sustainability goals in terms of CO2/NOX emissions and reductions in noise. New technologies, such as electrification, are therefore required to achieve these goals. As we have seen on other episodes of the podcast, electrification of aircraft is currently a hot topic with new start-up companies promising to disrupt and revolutionise the regional aircraft market. In this environment, one may assume that incumbents like Airbus are too slow to react to a changing technology landscape. As you will hear in this episode, nothing could be further from the truth. The E-Fan X project is structured as a separate entity within Airbus with the explicit mission of challenging Airbus’ legacy business. As you will hear, the consequences of integrating an electric propulsion system on a regional aircraft run much deeper than mere calculations about battery power density and battery longevity. In fact, it's the secondary effects that we rarely think, hear and read about, such as thermal management of batteries; the interaction between pilots and new control systems; and the challenges of new certification protocols, that are especially challenging. So in this episode, Oliver and I discuss: what exactly the E-Fan X demonstrator aims to achieve the main technical and economic challenges of electric aircraft and how electrification widens the design envelope for engineers If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and process visit SAMPE's website, or consider attending one of SAMPE’s conferences, such as CAMX, the largest and most comprehensive composites and advanced materials event for products, solutions, networking, and advanced industry thinking. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Airbus announcement on the E-Fan X Airbus on the future and importance of electric flight (Link 1 and 2) Royal Aeronautical Society article on the E-Fan X Rolls Royce video on the E-Fan X engines
Nov 06, 2018
Podcast Ep. #19 – Manuel Schleiffelder on the Hound Project and Metal Matrix Composites for Rockets
45:09
Today I am speaking to Manuel Schleiffelder, an aerospace engineer based in Vienna, Austria. Manuel has a background in designing and building experimental rockets with the student space team of the Technical University in Vienna, known as the Hound Project. I spoke to Manuel after he returned from a trip to the Black Rock Desert, where the Vienna space team tested their newest two-stage experimental rocket. Manuel has a very broad background in space engineering having worked on projects varying from spacecraft design of lunar landers and systems engineering of rocket propulsion systems, to his newest research project in materials science: metal matrix composites. In a classic rocket engine the exhaust gases have a speed limit of exactly Mach 1 (the speed of sound) at the narrowest portion of the nozzle—the so-called choking condition. Since the speed of sound increases with temperature, hotter combustion means the exhaust gases can be expelled from the rocket at greater velocity. While the speed of sound in air at room temperature is typically around 1200 km/hr (745 mph), the speed of sound in the hot exhaust gases of a rocket can be more than 5 times this value. So even though we want our rocket engine to run as hot as possible, there are obvious practical limitations in terms of the ability of materials to withstand these extreme temperatures. For this reason, most rocket engines use some form of cooling to keep the material temperature within reasonable bounds. Manuel is currently developing metal matrix composite materials (carbon fibres embedded within a metal matrix) that are strong enough to withstand the extreme temperatures without the additional mass and complexity of a cooling system. In this episode, Manuel and I talk about his background in aerospace engineering the rockets that the Vienna student space team are building and testing and the advantages and challenges of developing metal matrix composites for rocket engines. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and process visit SAMPE's website, or consider attending one of SAMPE’s conferences, such as CAMX, the largest and most comprehensive composites and advanced materials event for products, solutions, networking, and advanced industry thinking. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Manuel's web presence Webpage Twitter Propulsion system schematic Metal matrix composite thruster prototype Vienna Space Team (the Hound Project) Hound Project launch video Detailed analysis of the Black Rock Desert launch
Oct 23, 2018
Podcast Ep. #18 – Prof. Wenbin Yu on the Structure Genome
38:59
On this episode I am speaking to Wenbin Yu, who is a professor at the School of Aeronautics and Astronautics of Purdue University and CTO of AnalySwift, a provider of simulation software for composites. Wenbin has achieved many accolades in both the academic world and in the private sector, and is a fellow of the American Society of Mechanical Engineers. His specialty lies in multi-scale modelling of materials and structures, a topic that we delve into throughout this episode. Material scientists are increasingly inventing materials that are designed from the ground up. This means they take some fundamental building block and then attempt to arrange this building block in an architected manner over multiple length scales. The challenge with these multi-scale architected materials is that the global macro-scale behaviour is influenced by what happens at the micro-scale. And equally, macro-scale deformations can cause damage at the micro-scale. Therefore, modern computational models that are used to design aircraft need to account for what happens at these different length-scales. Traditionally, this is done by constructing different models for each of the length scales, but the problem with these approaches is that they are computationally inefficient. To overcome this, Prof. Yu has developed the Structure Genome, which allows engineers to efficiently aggregate information of the smaller length scales into models at the greater length scales. In this episode, Prof. Yu and I talk about: the fundamental difference between a material and a structure why multi-scale modelling is important for modern materials and structures the Structure Genome and how it is being applied to aircraft structures. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and process visit SAMPE's website, or consider attending one of SAMPE’s conferences, such as CAMX, the largest and most comprehensive composites and advanced materials event for products, solutions, networking, and advanced industry thinking. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Prof. Wenbin Yu's webpage Structures vs Materials—what is what? And what is a composite material, exactly? Multi-scale Modelling The Mechanics of Structure Genome The Structure Genome (AIAA Conference Paper)
Oct 02, 2018
Podcast Ep. #17 – Alba Orbital Engineer Andrew Dunn on PocketQubes
34:46
On this episode of the Aerospace Engineering Podcast I am speaking to Andrew Dunn who is an engineer at the satellite company Alba Orbital in Glasgow, Scotland. Alba Orbital is in the business of building PocketQubes, which are miniaturised satellites mainly used for space science, Earth imaging and space exploration. As the name suggests, PocketQubes are pocket-sized, usually around 5 cm (2 in) cubed and weighing no more than 180 grams. What is more, PocketQubes are typically assembled entirely from commercial off-the-shelf components, driven mostly by the miniaturisation of smartphone electronics, and this makes PocketQubes an ideal low-cost testbed for university labs and smaller startup companies. Traditional satellites of the last decades often took so long to develop that by the time they were launched into space, the technology was already out of date. Furthermore, their large size increased launch costs and most components were one-off designs that made them too expensive but for the largest companies. Alba Orbital is currently developing the Unicorn-2 PocketQube platform, which is a modular design that can host different payloads, such as optical equipment, deployable antennas or a radio module, but is built on a foundation of integrated electronics that can serve any need. In this episode, Andrew and I talk about: the unique features of PocketQubes their components and how they are manufactured and Alba Orbital’s future plans for the Unicorn-2 platform If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multiscale modeling program, SwiftComp provides an efficient and accurate tool for modeling aerospace structures and materials featuring anisotropy and heterogeneity. Not only does SwiftComp quickly calculate the complete set of effective properties needed for use in macroscopic structural analysis, it also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, designing earlier in the process, and getting to market more quickly. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Alba Orbital Webpage Unicorn-1 Unicorn-2 Alba Orbital Twitter Alba Orbital profile in Wired Alba Orbital and Vector partnership
Sep 11, 2018
Podcast Ep. #16 – Max Haot and Launcher’s Ten-year Journey to Deliver Small Satellites to Orbit
48:28
On this episode I am speaking to Max Haot, who is the founder of Launcher, a rocket startup based out of Brooklyn, NY. Launcher was founded in early 2017 and is on a ten-year journey to deliver small satellites to orbit. More specifically, Launcher plans to deliver payloads of up to 300 kg into low-earth orbit cheaper than anyone else in the growing small launcher market; a market specialising on small satellites that will deliver GPS, internet services and earth imaging in the near future. The most difficult part of launching satellites into orbit is building a robust and reliable rocket engine. On top of that, the physics of the rocket equation dictate very stringent constraints on the mass of the rocket and payload. To launch a satellite into low-earth orbit, a typical liquid-oxygen/kerosene rocket is around 95% propellant on the launchpad. So any fuel savings from a more efficient rocket engine can go towards increasing the payload. Launcher has spent the last year working on their proof-of-concept engine, the E-1, and are now in the process of spending the next three years developing the 40x larger E-2 engine. Key to Launcher’s rocket engine is 3D printing and a staged combustion cycle. 3D printing allows for a reduction in parts, faster development times, and easier manufacturing of complex geometries such as integrated cooling channels, which all help to reduce costs. In a staged combustion cycle, a favourite of Soviet rocket engineers, propellant flows through two combustion chambers, a preburner and a main combustion chamber. The pressure produced by igniting a small amount of propellant in the preburner can be used to power the turbo pumps that force the remaining propellant into the main combustion chamber. The addition of the preburner leads to better fuel efficiency, but comes at the cost of greater engineering complexity. One of the things I love about Launcher is that they face this daunting engineering challenge with the utmost humility, documenting many of their failures and successes online for everyone to see. In this way, anyone can get a glimpse of what it means to build a rocket company from scratch. In this episode of the Aerospace Engineering Podcast you will learn: how Max got into the space industry the engineering details behind many aspects of the E-1 engine the advantages of 3D printing and stage combustion and Launcher’s current schedule for developing the full-size E-2 engine If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multiscale modeling program, SwiftComp provides an efficient and accurate tool for modeling aerospace structures and materials featuring anisotropy and heterogeneity. Not only does SwiftComp quickly calculate the complete set of effective properties needed for use in macroscopic structural analysis, it also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, designing earlier in the process, and getting to market more quickly. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.
Aug 22, 2018
Podcast Ep. #15 – Nick Sills on Contra-Rotating Electric Propulsion
46:06
On this episode I am speaking to Nick Sills who is the founder of Contra Electric Propulsion Ltd. Nick’s engineering background is in developing underwater propulsion systems for the offshore oil and gas industry. He has designed products ranging from a hydraulically powered excavator for pipeline route trenching, to the world’s biggest deep water excavator. He received a Queen's Award for Technological Achievement for the "Jet Prop" tool, a 5 m diameter propeller that is powered by ejecting high pressure seawater from its propeller blades. Nick founded his most recent company, Contra Electric Propulsion, to develop a contra-rotating propeller system for the light aircraft market. Contra-rotating propeller systems typically use two propellers mounted in series that spin in opposite directions. The fact that props are spinning in both directions alleviates many of the attitude and control problems when flying aircraft. Contra-rotation has rarely found its way onto modern, gas-powered aircraft because the variable-pitch requirement for efficient operation has made the system overly expensive, complex and maintenance intensive. By changing the power source from fossil fuels to electrons, however, many components of the modern aircraft can be designed differently. With new electric motors it is now possible to build a much simpler, fixed-pitch, contra-rotating propulsion system for light aircraft. As an aerobatic pilot, Nick immediately realised the massive advantages of instantaneous torque delivery and reversible thrust that electric motors can provide. That's why he believes that the next big advance in light aircraft propulsion will be a battery-powered, twin motor, contra-rotating system with fixed-pitch propellers. Since this has now become technically feasible, he is privately building one to prove it. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multiscale modeling program, SwiftComp provides an efficient and accurate tool for modeling aerospace structures and materials featuring anisotropy and heterogeneity. Not only does SwiftComp quickly calculate the complete set of effective properties needed for use in macroscopic structural analysis, it also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, designing earlier in the process, and getting to market more quickly. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Contra Electric Propulsion Why electric? Contra Electric's system components Benefits of the system Background on Nick and his flying and offshore days Contra-rotation in action: videos Forwards propulsion Forwards/Backwards propulsion Full capability: one/two rotor, forward/backward
Jul 24, 2018
Podcast Ep. #14 – Dufour Aerospace Co-Founder Thomas Pfammatter on the aEro2 VTOL Electric Aircraft
52:11
On this episode I am speaking to Thomas Pfammatter, who is the co-founder of the Swiss electric aircraft startup Dufour Aerospace. Dufour is currently designing an electric aircraft with vertical take-off and landing (VTOL) capabilities for the urban and rural transport market. The promise of their current aircraft, the aEro 2, is that with VTOL capabilities it can take-off and land pretty much anywhere, which can considerably reduce travel times, especially to places that are difficult to reach by car or train. There is a long-standing compromise in aviation between taking-off vertically, and being able to travel fast horizontally. Dufour Aerospace believes that with electric propulsion it is possible to combine these two worlds. To achieve this, Dufour are using a tilt-wing design fitted with two propellers. The wing and attached propellers can pivot around a hinge between the horizontal and vertical planes, and thereby provide exceptional lift, stability and control characteristics even in slow flight. Dufour have proven their electrical aviation ambitions with the aEro1 aerobatic aircraft and are currently in the process of developing the tilt-wing aEro 2 airplane. In this episode you will learn about many of the details behind Dufour’s technology such as: the tilt-wing concept and the tail fan used for pitch control the aerodynamic importance of the vortex ring state the future of regional travel and how Dufour hopes to influence this space If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode is brought to you by AnalySwift. Do you work in the design and analysis of aerospace structures and materials? If so, AnalySwift’s innovative engineering software SwiftComp may be the solution you’re seeking. Used either independently for virtual testing of aerospace composites or as a plugin to power conventional FEA codes, SwiftComp delivers the accuracy of 3D FEA in seconds instead of hours. A general-purpose multiscale modeling program, SwiftComp provides an efficient and accurate tool for modeling aerospace structures and materials featuring anisotropy and heterogeneity. Not only does SwiftComp quickly calculate the complete set of effective properties needed for use in macroscopic structural analysis, it also accurately predicts local stresses and strains in the microstructure for predicting strengths. Find out how others in composites are saving time while improving accuracy, designing earlier in the process, and getting to market more quickly. For a free trial, visit analyswift.com. SwiftComp: Right results. Right away. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Dufour Aerospace: The vision The technology of the aEro 2 The aEro 1 aircraft aEro 2 flying simulation aEro 2 press release What does it feel like to fly an electric aircraft? The vortex ring state
Jul 10, 2018
Podcast Ep. #13 – Skyrora’s Lead Engineer Robin Hague on Scotland’s New Satellite Launch Capability
32:42
Robin Hague is the Lead Engineer at the rocket startup Skyrora based in Edinburgh, Scotland. The goal of Skyrora is to provide a dedicated launch vehicle for small satellites. It has never been cheaper to build small satellites that provide imaging and communication services, and this sector of the space economy is expected to grow rapidly over the coming years. The UK is a world leader in the small satellite business—with Glasgow in Scotland building more satellites than any other city in Europe—but there is currently a shortfall of dedicated launchers for these satellite companies. Skyrora hopes to serve this market by launching rockets from Norther Scotland, which has great access to polar and sun-synchronous orbits. In this episode of the Aerospace Engineering podcast Robin and I talk about: the history of British rocketry (the Black Arrow) the benefits of using hydrogen peroxide as a propellant the role of 3D printing in modern rocket engines and the future of Skyrora. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and process visit SAMPE's website, or consider attending one of SAMPE’s conferences, such as CAMX, the largest and most comprehensive composites and advanced materials event for products, solutions, networking, and advanced industry thinking. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Skyrora: Webpage and Twitter feed Skyrora and 3D printing Hydrogen peroxide as propellant: Wikipedia Building a peroxide-pasta rocket ESA on hydrogen peroxide Plans to launch from Northern Scotland The British are coming...for the rocket-launching industry The Black Arrow rocket: (1, 2) and cross-section drawing
Jun 21, 2018
Podcast Ep. #12 – The Perlan Project: Soaring to the Edge of Space
37:09
This episode features an in-depth look at the Perlan Project. The mission of the Perlan Project is to fly an engineless aircraft to the edge of space, in this case, by taking advantage of an aerodynamic phenomenon known as wave lift. Not only is soaring to 90,000 feet an audacious goal, but on top of that, the Perlan Project is a worldwide collaborative project run entirely by aviation enthusiasts, scientists, engineers and adventurous pilots. No one has ever soared to the edge of space in a glider and so the Perlan engineers are venturing into unchartered aviation territory on their own. On this episode of the Aerospace Engineering Podcast I speak to Project Manager Morgan Sandercock and Flight Test Engineer Alan Lawless about: the genesis and history of the Perlan Project how one goes about designing, manufacturing and testing a glider that is to fly to the edge of space past success stories and the team's future plans for breaking aviation records. In case you personally want to support the Perlan Project as a donor, you can do so on the Perlan Project donor page. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and process visit SAMPE's website, or consider attending one of SAMPE’s conferences, such as CAMX, the largest and most comprehensive composites and advanced materials event for products, solutions, networking, and advanced industry thinking. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, stressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode The Perlan Project The aircraft Missions Blog Perlan II sets new altitude world record (video) Airbus and Perlan Perlan's goal to reach 90,000 feet Perlan Project on Twitter Perlan's director: Einar Enevoldson (AMA on Reddit)
Jun 05, 2018
Podcast Ep. #11 – Dr Priyanka Dhopade on Jet Engine Optimisation and Women in Engineering
45:05
Priyanka Dhopade received her PhD from the University of New South Wales in Canberra, Australia and was the recipient of the Zonta Amelia Earhart Fellowship award, awarded annually to the 35 most outstanding female aerospace PhD students worldwide. Since 2013 she has been researching the thermodynamics of jet engines in the Thermofluids Institute at Oxford University. Priyanka is an expert in computational fluid dynamics modelling of heat transfer, aerodynamics and aero-elasticity in jet engines. She is currently leading the modelling campaigns for various projects in collaboration with industry partners relating to turbine and compressor tip clearance control, turbine internal cooling and active flow control. In this episode, Priyanka and I talk about: the challenges of improving the efficiency of current gas turbines the intricacies of fluid dynamics modelling and a topic particularly close to her heart, the diversity challenge in STEM fields. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode is brought to you by KDC Resource—the experts in engineering recruitment for the aerospace and defence sector. For more than 15 years, KDC has been matching the very best engineers with the biggest names in the industry; from Airbus Group and GKN Aerospace to Cobham and BAE Systems. KDC’s deep talent pool of aerospace engineers means they are perfectly poised to meet your particular needs with the ideal candidate. In a time of unprecedented engineering skills shortage, KDC Resource will give you an edge over your competitors in the recruitment market. Selected Links from the Episode Priyanka's research profile at Oxford University Oxford Thermfluids Institute Turbine Cooling and Design Active tip-clearance control (Wiki and NASA) What is CFD? Women in Engineering at Oxford Priyanka on the BBC This is Engineering
May 22, 2018
Podcast Ep. #10 – Kitty Hawk Roboticist Dr Mark Cutler on UAVs, Machine Learning and Personalised Flying
40:28
Dr Mark Cutler has a PhD in Robotics and Autonomous Systems from MIT. He has researched multiple aspects of UAV technology—from designing and building his own novel quadrotor for aerobatic flight to developing machine learning algorithms for autonomous systems. Mark is currently working for the California-based startup Kitty Hawk backed by Google founder Larry Page. At Kitty Hawk, Mark is applying his expertise in rotorcraft to create the next generation of vehicles for everyday flight. Kitty Hawk are currently designing, testing and building all-electric vertical take-off and landing vehicles for work and play. Their first product, the Cora, is an air taxi that could one day bring us an UBER-like service for the sky, and Kitty Hawk is currently in the first stages of testing the Cora in New Zealand. In this episode of the Aerospace Engineering Podcast, Mark and I talk about: his diverse background in UAV's the explosion of hobbyist rotorcraft the promises of machine learning for autonomous flight and the future of personalised flying If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode is brought to you by KDC Resource—the experts in engineering recruitment for the aerospace and defence sector. For more than 15 years, KDC has been matching the very best engineers with the biggest names in the industry; from Airbus Group and GKN Aerospace to Cobham and BAE Systems. KDC’s deep talent pool of aerospace engineers means they are perfectly poised to meet your particular needs with the ideal candidate. In a time of unprecedented engineering skills shortage, KDC Resource will give you an edge over your competitors in the recruitment market. This episode is also sponsored by StressEbook.com, which is an online hub for you if you are interested in aerospace stress engineering. StressEbook.com provides world-class engineering services and online courses on the stress analysis of aircraft structures, as well as a free ebook and blog. No matter if you’re a junior or senior structural analyst, StressEbook.com provides you with the skills and know-how to become a champion in your workplace. Selected Links from the Episode Contact Mark through his website Mark's quadcopter on Gizmodo Kitty Hawk and career opportunities A video of Kitty Hawk's Cora A Tech Insider video on Kitty Hawk's Flyer The New York Times on Kitty Hawk's flying cars A vision for flying taxis
May 08, 2018
Podcast Ep. #9 – Faradair Founder Neil Cloughley on the Bio-Electric Hybrid Aircraft and Regional Aviation
1:16:48
Neil Cloughley is the founder and managing director of Faradair, the UK's leading hybrid aviation programme. Neil has a broad background in the aviation industry ranging from aircraft re-marketing and aircraft leasing to starting his own aircraft consultancy business, which found him working with the world's major airlines, OEMs and trailblazing companies like Virgin Galactic. Neil's father developed one of the most advanced unmanned aerial vehicles of the early 1990s, and had a flying prototype before the General Atomics MQ-1 Predator entered service in 1995. Unfortunately, as a result of being slightly ahead of its time, and due to a lack of funds and unfortunate timing, ASVEC UK had to close its doors. Neil is now stepping into his father's footsteps and building the bio-electric hybrid aircraft (BEHA) drawing from many of the lessons he learned from his father. The BEHA is a six-passenger aircraft with a hybrid gas and electric propulsion system, and is to be used for regional travel of around 200 miles. The BEHA has an unconventional design with a triple-staggered wing, an all-composite airframe and a ducted propeller. These design decisions reflect the three key specifications that need to be met to make regional inter-city flight a reality: minimising noise, emissions and operational costs. In this conversation, Neil and I talk about the engineering behind BEHA the challenging economics of new aviation businesses his long-term vision for a regional Uber-like taxi service in the sky and much, much more If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by supporting it directly on Patreon, where patrons of the podcast receive exclusive behind-the-scenes content and special episodes. Thanks a lot for listening! This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and processes, consider attending the SAMPE 2018 Technical Conference and Expo in Long Beach, California. Selected Links from the Episode Faradair and the BEHA Neil's vision of an UBER in the sky The Journey of an Aerospace Startup --- Royal Aeronautical Society lecture Profile of Neil Cloughley Faradair partnership with Swansea University ProDrive's partnership with Faradair
Apr 25, 2018
Podcast Ep. #8 – Rocket Lab’s Lachlan Matchett on Democratising Access to Space and the Rutherford Rocket Engine
36:41
In this episode I am talking to Lachlan Matchett, who is the VP of Propulsion at Rocket Lab. Rocket Lab is a startup rocket company with the mission of removing barriers to commercial space by frequent launches to low-earth orbit. The current conundrum of many space technology companies that want to launch small satellites into space is that there is no dedicated launch service tailored to their needs. This is where Rocket Lab enters the picture. To provide small payloads with a flexible and dedicated launch vehicle, Rocket Lab has developed the Electron rocket. The Electron is a two-stage rocket that can be tailored to unique orbital requirements and provides frequent flight opportunities at personalised schedules. In terms of the engineering, there are many interesting features to the Electron rocket, but one of the key innovations is the Rutherford engine that Lachlan Matchett and his team have developed over the last five years. Rutherford is the first oxygen/kerosene-powered engine to use 3D printing for all primary components. In fact, the Rutherford engine can be printed in an astounding 24 hrs, and this is one of the driving factors behind Rocket Lab's cost efficiency and high target launch frequency. So in this episode, Lachlan and I talk about: Rocket Lab's business model their recent launch success in Jan 2018 some of the engineering highlights of the Rutherford engine and Rocket Lab's plans for the future I hope that you enjoy this conversation as much as I did. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by becoming a patron. Also, as of this writing Rocket Lab is hiring, so make sure to check out their careers page. You can tune into Rocket Lab's future launches by following Rocket Lab on Twitter. What have you learned from this episode? Let me know on Twitter by clicking here. This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and processes, consider attending the SAMPE 2018 Technical Conference and Expo in Long Beach, California. Selected Links from the Episode Rocket Lab Electron rocket Rutherford Engine Careers at Rocket Lab Rocket Lab on Twitter Follow the Humanity Star Lachlan Matchett wins Young Engineer of the Year Jan 2018 launch "Still Testing" (launch video countdown at 14:50) Rocket Lab's upcoming launch "It's Business Time"
Apr 06, 2018
Podcast Ep. #7 – Dr Valeska Ting on Smart Nanomaterials for Hydrogen Storage
30:23
Today's episode features Dr Valeska Ting who is a Reader in Smart Nanomaterials at the University of Bristol and is researching the use of nanoporous materials for hydrogen storage. Using hydrogen as a fuel source has many benefits. Due to its excellent energy density, hydrogen has long been hailed as an alternative to fossil fuels but it's also an excellent means of storing renewable energy from solar or wind sources. One of the challenges of storing hydrogen is its low density, meaning that large volumes are required to store efficient amounts of hydrogen to be able to use it as a fuel. This is precisely where Valeska’s research enters the picture. The nanoporous materials that she is working on can increase the density of hydrogen by a factor of a 1000, and therefore provide a key stepping stone towards more efficient hydrogen-powered vehicles. In this episode, Valeska and I talk about multiple aspects of this technology including: what nanoporous materials are and how they work how they can be used to create multifunctional materials what scientific challenges she is addressing to scale-up and improve their performance, and how they could be applied to design lighter hydrogen tanks for cars, aircraft or even rockets I hope that you enjoy this conversation as much as I did. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by becoming a patron. What have you learned from this episode? Let me know on Twitter by clicking here. This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and processes, consider attending the SAMPE 2018 Technical Conference and Expo in Long Beach, California. Selected Links from the Episode Valeska's research: Research profile Nanoporous materials for automotive applications YouTube video of her research What is a nanoporous material? Outlook and challenges for nanoporous materials
Mar 20, 2018
Podcast Ep. #6 – Oxford Space Systems Founder Mike Lawton on Deployable Space Structures
43:00
On this episode of the podcast I speak to Mike Lawton, who is the founder and CEO of Oxford Space Systems (OSS). OSS is an award-winning space technology company that is developing a new generation of deployable space structures that are lighter, simpler and cheaper than current products on the market. These deployable structures deploy antennas and solar panels on satellites orbiting earth, and are tricky to design because they need to package to a fraction of their deployed size, and need to be as lightweight as possible. OSS’ first product, the AstroTube boom, was launched into space and deployed on a cubesat in September 2016. This achievement set a new industry record in terms of development time, going from company formation to orbit in under 30 months. I met Mike at the OSS design office to talk about: venture capital funding of NewSpace companies how the design philosophy of NewSpace companies differs from established firms how origami, the Japanese art of folding, is being used to design more efficient deployable structures the flexible composites technology that OSS are developing and his vision for the future of space commercialisation I hope that you enjoy this conversation as much as I did. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by becoming a patron. This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and processes, consider attending the SAMPE 2018 Technical Conference and Expo in Long Beach, California. Selected Links from the Episode Oxford Space Systems: Technology overview  AstroTube AstroHinge Origami and unpacking in space (Part 1, Part 2) First product launch Harwell Space Cluster Catapult Satellite Applications NewSpace UK Space Agency Funding Prof. Zhong You, Oxford University Asteroid mining
Mar 05, 2018
Podcast Ep. #5 – Concorde Chief Engineer John Britton on Supersonic Flight
29:55
In this episode I am talking to John Britton. John was the chief engineer of Concorde on the British side of the enterprise from 1994 until Concorde’s demise in 2003. John possesses a wealth of knowledge regarding the engineering behind Concorde, and its heritage in Bristol, UK. Because he was the chief engineer at its demise, he also has a unique insight into why the aircraft is no longer flying today. In this conversation, John and I talk about: how he ended up as the Chief Engineer of Concorde what engineering feats made Concorde special why Concorde is no longer flying today and what he thinks new supersonic companies need to focus on This interview was recorded at Aerospace Bristol, which is a new aerospace museum located at Filton Airfield in the South West of the United Kingdom. From the beginnings of powered flight, Filton Airfield was the birthplace of many a flying machine – from aeroplanes and helicopters to missiles and satellites. Aerospace Bristol represents the new heart to the area’s aerospace heritage. I hope that you enjoy this conversation as much as I did. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by becoming a patron. This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and processes, consider attending the SAMPE 2018 Technical Conference and Expo in Long Beach, California. Selected Links from the Episode Aerospace Bristol museum Heritage of Filton Airfield Sir George White The Bristol Aeroplane Company British Aircraft Corporation Concorde: Timeline  The Concorde Story documentary Powerplant, fuel system, wing and skin temperatures The demise of Concorde: video and article and another article The Concorde rival: Tu-144 Overview The Paris Crash (ironic that Concorde too would crash in Paris 30 years later) Return of supersonic commercial flights with:  Boom Supersonic (video)  Spike Aerospace (video)
Feb 11, 2018
Podcast Ep. #4 – Kim-Tobias Kohn on Electric Aviation
46:53
"We need to get going into the future in terms of clean aviation" --- Kim-Tobias Kohn On this episode of the podcast I speak to Kim-Tobias Kohn who is a lecturer in Aerospace Engineering at the University of the West of England. Beside his main vocation, Kim is also an avid pilot and runs an electric skateboard startup company. Kim has garnered attention in the media and from aerospace societies in the UK for his unique university project of building an electric glider with his undergraduate students. For obvious reasons, building an electric passenger aircraft that can replace current fuel-powered airliners is significantly more challenging than replacing gasoline cars with electric vehicles. However, there is a growing grass-roots initiative developing in the UK that is attempting to solve some of the regulatory and technical challenges to realise this vision of electric aviation. So in this episode Kim and I talk about: the unique regulatory framework for experimental aircraft in the UK known as the E-conditions the major technical hurdles that need to be overcome to make electric aviation a reality how the UAV/drone sector is opening doors for larger-scale electric aviation his university project of building an electric glider his dreams for a student-led design, build and fly competition for electric aircraft and much, much more I hope that you enjoy this conversation as much as I did. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by becoming a patron. What have you learned from this episode? Let me know on Twitter by clicking here. This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and processes, consider attending the SAMPE 2018 Technical Conference and Expo in Long Beach, California. Selected Links from the Episode Kim's electric glider project and his YouTube Vlog Kim's company emotion engineering (UAV's, electric skateboards and aerial photography) More info from the University of the West of England about the undergraduate electric glider project Royal Aeronautical Society on electric flight The UK E-conditions Airbus, Rolls Royce and Siemens E-fan hybrid electric aircraft EasyJet on electric aircraft Wired on electric aircraft Electric flight potential and limitations Formula Student and Formula SAE SolarFlight solar-powered planes Boeing 787 Dreamliner battery problems
Feb 05, 2018
Podcast Ep. #3 – Airbus Senior Expert Ian Lane on the A350, Innovation in Aerospace, and Diversity in Engineering
51:19
"You could say: What could we possibly do next? You look back at history and say: All the shelves must be full now! We must have the capabilities to do everything we need. And yet, we still go on...It's your generation that is going to Mars. So please, can you get on with it and do it, because I want to enjoy it from the augmented reality that other engineers are going to produce." --- Ian Lane This episode features Ian Lane, Senior Expert in Composite Analysis for Airbus UK. Ian has more than 40 years of experience in the aerospace industry and his career has taken him from British Hovercraft to British Aerospace, Westland Helicopters and finally to his current role at Airbus. On top of this broad aerospace background, Ian's specialty are modern composite airframes and he was the lead stress engineer on the Airbus A400M and Airbus A350. Ian is also a Visiting Professor in Aerospace Engineering at the University of Bristol, and a great example of an industry leader who knows how to inspire the next generation of young engineers. Indeed, Ian is actively involved with the Airbus Fly Your Ideas campaign, and a regular attendee at many international research conferences. In this episode Ian and I discuss: his career progression from apprentice to Senior Expert at Airbus the incredible safety record of the aerospace industry why the demise of Concorde wasn't a step backwards how Airbus fosters innovation and out-of-the-box thinking why inclusion and diversity in engineering are so important and much, much more I hope that you enjoy this conversation as much as I did. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by becoming a patron. What have you learned from this episode? Let me know on Twitter by clicking here. This episode of the Aerospace Engineering Podcast is sponsored by SAMPE North America. SAMPE is a global professional society that has been providing educational opportunities on advanced materials for more than 70 years. SAMPE’s network of engineers is a key facilitator for the advancement of aerospace engineering by enabling information exchange and synergies between aerospace companies. To find out how SAMPE can help you learn more about advanced materials and processes, consider attending the SAMPE 2018 Technical Conference and Expo in Long Beach, California. Selected Links from the Episode Airbus in Bristol & Filton, UK British Hovercraft Company Westland Helicopters (for a time known as AugustaWestland and now Leonardo Helicopters) Sikorsky Crisis, also known as the Westland Affair British Aerospace (now known as BAE Systems) The EU TANGO project (overview slides) A400M and A350 airframes, and contrasts between the two Evolution of composite application at Airbus Airbus Helicopters NH90 and Tiger Bend-twist coupling in aircraft wings Clean Sky initiative New aerospace metallic alloys Additive manufacturing and bionic 3D printing at Airbus Aerospace testing pyramid and virtual testing Burt Rutan and Scaled Composites A picture history of aviation safety and the "anti-fragile" nature of aircraft design Concorde demise and the Concorde Museum Airbus Fly Your Ideas Diversity at Airbus, Diversity & Inclusion in Engineering Women of NASA Lego Evolution of flying machines
Dec 19, 2017
Podcast Ep. #2 – Prof. Paul Weaver on Shape, Stiffness and Smart Aerospace Structures
48:48
"There's been a lot of good press from the science community on self-assembly of atoms. Well, I guess what I'm looking for is self-assembly and disassembly of large-scale structures...There is all sorts of exciting things we can do when [engineering] structures re-configure themselves." --- Prof. Paul Weaver This episode features Prof. Paul Weaver, who holds a Bernal Chair in Composite Structures at the University of Limerick in Ireland, and is the Professor in Lightweight Structures at the University of Bristol in the United Kingdom. Lightweight design plays a crucial role in the aerospace industry, and Paul has worked on some fascinating concepts for more efficient aircraft structures. Paul's research has influenced analysis procedures and product design at NASA, Airbus, GKN Aerospace, Augusta Westland Helicopters, Vestas (and many more), and in this episode we cover some of his past accomplishments and his vision for the future. Central to this vision is artificial metamorphosis, which is a term that Paul coined to describe structures that re-configure by dis-assembly and re-assembly to adapt and optimise on the fly. Although Paul thinks that this vision of engineering structures is still 50 years into the future, he is well known for his work on a related technology: topological shape-morphing. The simplest example of a morphing structure is a leading edge slat, which is used on all commercial aircraft today to prevent stall at take off and landing. Paul, on the other hand, envisions morphing structures that are more integral, that is without joints and which do not rely on heavy actuators to function. Apart from artificial metamorphosis, Paul and I discuss his teenage dreams of becoming a material scientist his work with Mike Ashby at Cambridge University on material and shape factors interesting coupling effects in composite materials that can be used for elastic tailoring his work with Augusta Westland helicopters on novel rotor blades why NASA contacted him about his research on buckling of rocket shells and much, much more I hope that you get a feel for Paul’s enthusiasm for aerospace engineering. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by becoming a patron. Please enjoy this wide ranging conversation with Prof. Paul Weaver! What have you learned from this episode? Let me know on Twitter by clicking here. Selected Links from the Episode Bernal Institute, University of Limerick Paul’s research group at the University of Limerick and the University of Bristol Structures: Or Why Things Don't Fall Down and The New Science of Strong Materials: Or Why You Don't Fall Through the Floor by Prof. J E Gordon Prof. Mike Ashby, materials selection using Ashby plots and its geometrical counterpart: shape factors, CES Materials Selector Second moment of area AugustaWestland AW101 Merlin helicopter that uses bend-twist coupling in the rotor blades to decouple vibration modes Bend-twist coupling of a wing-box explained on the Grumman X-29 Geometrically swept wind-turbine blades for improved performance Imperfection sensitivity of cylinders (the introduction of this paper conveys the message) Video of collapsing soda can and "scientific" crush test Morphing: NASA morphing aircraft FlexSys wing without flaps A project by NASA and MIT on flexible morphing structures NASA shape-shifting wings A morphing air inlet A video featuring Paul talking about his research and vision for artificial metamorphosis Some topics related to metamorphosis are: Molecular self-assembly 4D printing Re-configurable materials The deHavilland Mosquito, the importance of phenolic resins in constructing the Mosquito, and Norman de Bruyne
Nov 06, 2017
Podcast Ep. #1 – Dr Chauncey Wu on NASA, Rocket Science and Advanced Composite Materials
1:04:45
"If you're trying to put these structures into orbit, every gram counts. Not just every pound but every gram...So you are making structures that are operating at their margins." --- Dr Chauncey Wu, NASA Langley Research Center Today's conversation features Dr Chauncey Wu, who is a research engineer at NASA Langley Research Center in Hampton, Virginia. Chauncey has worked at NASA for more than 30 years, predominantly in the field of structural mechanics, and has been responsible for designing and testing a number of space structures that have been launched into space. Some examples of his work include structural analyses on the LITE telescope that was launched into space in 1994, as well as the optimisation of rocket propellant tank structures, and conceptual design studies of lunar lander vehicles and habitat structures for the colonisation of the Moon. In this wide-ranging conversation, we discuss: Chauncey’s path to NASA as an undergraduate student The history of NASA and the cultural shift compared to its predecessor, the NACA The reason why rocket science is so hard Chauncey’s recent research on a new type of lightweight composite material: tow-steered composites, which could be a game-changer for rocket booster designs And much, much more Please enjoy this wide ranging conversation with Dr Chauncey Wu! If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by becoming a patron. What have you learned from this episode? Let me know on Twitter by clicking here. Selected Links from the Episode NASA Langley Research Center NASA Glenn, NASA Goddard, NASA Ames and NASA Marshall NASA co-op program The NACA (predecessor to NASA) Bob Gilruth, Chris Kraft Collier Trophy Low-Drag Cowling and Fred Weick John Stack, Larry Bell, Chuck Yaeger and the X-1 Slotted-wall wind tunnel Richard Whitcomb, the Area Rule and the Supercritical Airfoil Science Office for Mission Assessments The safety factor The history of rocketry and a primer on rocket science and lightweight design Tow-steered composites (some further NASA research here and here) ISAAC Imperfection sensitivity of cylinders (the introduction of this paper conveys the message) Video of collapsing soda can and "scientific" crush test NASA Shell Buckling Knockdown Factor (video)
Oct 07, 2017
Introducing the Aerospace Engineering Podcast
1:56
I am happy and excited to announce a new project on the Aerospace Engineering Blog. To go along with the usual blog posts, I will now be releasing regular podcast episodes that feature conversations with engineers and researchers in industry and academia to reveal their fascinating real-world stories of innovation, and provide a glimpse into the future of the industry by discussing cutting-edge research and promising new technologies. This episode is just a quick primer of what I have in mind, and the first "real" episode will be released in a couple of days. If you have comments about the episodes or want to provide general feedback on the podcast, then please let me know on Facebook. If you find yourself enjoying the conversations, then I would appreciate a quick review on iTunes or Stitcher. This helps others find the podcast online. I will of course be publishing all episodes through this homepage as well, and you will receive notifications when I publish new episodes through the newsletter. You will be able to find archives of all published episodes here, and each episode post will contain show notes with links to further material of the topics discussed. If you enjoy the Aerospace Engineering Podcast you can support it by leaving a review on iTunes or by becoming a patron.
Sep 23, 2017