Artificial Intelligence in Industry with Dan Faggella

By Dan Faggella, Founder of TechEmergence

Listen to a podcast, please open Podcast Republic app. Available on Google Play Store.


Category: Tech News

Open in iTunes


Open RSS feed


Open Website


Rate for this podcast


Description

Artificial intelligence is more interesting when it comes from the source. Each week, Dan Faggella interviews top AI and machine learning executives, investors and researchers from companies like Facebook, eBay, Google DeepMind and more - with one single focus: Gaining insight on the applications and implications of AI in industry. Follow our Silicon Valley adventures and hear straight from AI's best and brightest.

Episode Date
What Executives Should be Asking about AI Use-Cases in Business
23:11

When contemplating a new venture into AI or machine learning, companies need to take on a number of important considerations that relate to talent, existing data and limitations. One way executives can judge how successful or appropriate and AI project would be for their company is to examine use cases of businesses that have previously done something similar.

With AI and machine learning news increasing in tech media, a business leader may find it challenging to cut through the hype and identify valid, useful case studies.

We talked to Ben Lorica, the Chief Data Scientist at O’Reilly Media, to get his insights on what key details executives should be looking for within a case study.

To see the our interview article, visit https://www.techemergence.com/what-executives-should-be-asking-about-ai-use-cases-in-business

Aug 15, 2018
NLP for Text Summarization and Team Communication
17:51

Episode Summary: In this episode of the podcast, we interview AIG’s Chief Data Science Officer, Dr. Nishant Chandra, about natural language processing (NLP) for internal and team communication. Dr. Chandra talks about how NLP can help with sharing documents with specific team members whose roles warrant viewing those documents.

Instead of a broad memo that would go out across the company, a document could be transformed to a tailored message depending on the individual receiving it. For instance, a document could be presented in a digestible way to the executive team, but be distilled to contain fewer details for the technology team to make it relevant to them. How might NLP serve this summarization role for internal communications in the next 5 years?

See the full interview article here: www.techemergence.com/nlp-text-summarization-team-communication

Aug 12, 2018
How to Determine the Best Artificial Intelligence Application Areas in Your Business
22:09

This week’s episode of the AI in Industry podcast focuses on two main questions. First, how should business leaders determine the most fruitful, potential applications of AI in their business? Second, how do they choose the right one into which to invest resources?

This week, we interview someone who has spoken with a number of CTOs and CIOs about early adoption strategies for machine learning for customer service, marketing, manufacturing and other applications. He is Madhusudan Shekar, Principal Evangelist at Amazon Internet Services.

See the full interview article here: www.techemergence.com/how-to-determine-the-best-artificial-intelligence-application-areas-in-your-business

Aug 03, 2018
The Financial ROI of AI Hardware - Top-Line and Bottom-Line Impact
24:37

At TechEmergence, we often talk about the software capabilities of AI and the tangible return on investment (ROI) of recommendation engines, fraud detection, and different kinds of AI applications. We rarely talk about the hardware side of the equation, and that will be our focus today. For hardware companies like Nvidia, stock prices have soared thanks to the popularity of new kinds of AI hardware being needed not only in academia but also among the technology giants. Increasingly, AI hardware is about more than just graphics processing units (GPUs).

Today we interview Mike Henry, CEO of Mythic AI. Mike speaks about the different kinds of AI-specific hardware, where they are used, and how they differ depending on their function. More specifically, Mike talks about the business value of AI hardware. Can specific hardware save money on energy, time, and resources? Where can it drive value? Where is AI hardware necessary to open new capabilities for AI systems that may not have been possible with older hardware? What is the right business approach to AI hardware?

This interview was brought to us by Kisaco Research, which partnered with TechEmergence to help promote their AI hardware summit on September 18 and 19 at the Computer History Museum in Mountain View California.

See the full interview article here:

www.techemergence.com/financial-roi-ai-hardware-top-line-bottom-line-impact

Jul 30, 2018
The Future of Advertising and Machine Learning - Audience Targeting, Reach, and More
19:00

Episode Summary: Facebook and Google’s advertising complex is founded on machine learning, allowing people to self-serve their data needs across a broad audience. India-based InMobi is a company in the advertising technology space that delivers 10 billion ad requests daily.

Today, we speak with Avi Patchava, Vice-President of Data Sciences and Machine Learning at InMobi, which operates in China, Europe, India, and the US. Patchava explains how machine learning plays a role in appropriately matching advertising requests to the right audience at scale,  whether on mobile, desktop or different devices and media. Patchava paints a robust picture of what this technology will look like moving forward and how it will change the game for marketers and advertisers, especially with the emphasis on data and machine learning.

See the full interview article here:

www.techemergence.com/future-advertising-machine-learning-audience-targeting-reach

Jul 29, 2018
How Existing Businesses Should Organize Their Data Assets for AI
30:28

Companies with wells of data at their disposal may find themselves asking how they can use them in meaningful ways. Generally speaking, a clean set of data is the foundation for AI applications, but business owners may not know how exactly to organize their data in a way that allows them to best leverage AI. How exactly does a business transition from having data with the potential for usefulness to having data that’s going to allow for an accurate, helpful machine learning tool—one that can actually help solve business problems?

In this episode of the podcast, we speak with Bryon Jacob, Co-founder and Chief Technology Officer at data.world, a company that offers products and services that help enterprises manage their data. In our conversation, Bryon walks us through the common errors companies make when creating and organizing data sets, and how these companies can transition to a more organized and meaningful data management system.

The details in this interview should provide business leaders with a better understanding of some of the processes involved in getting started with AI initiatives, and how to hire data science-related roles into a company.

See the full interview article with Bryon Jacob live at: 

https://www.techemergence.com/how-existing-bus…ta-assets-for-ai/

Jul 22, 2018
White Collar Automation in Healthcare - What's Possible Today?
21:38

Episode summary: In this episode of Ai in industry, we speak with Manoj Saxena, the Executive Chairman of CognitiveScale, about how AI and automation are being applied to white-collar processes in the healthcare sector.

In simple business language, Manoj summarizes key healthcare applications such as invoicing handling, bad debt reduction, claims combat, and the patient experience, and explains how AI and automation can make these processes more efficient to improve the patient experience in healthcare organizations.

Interested readers can listen to the full interview with Manoj here: 

https://www.techemergence.com/white-collar-automation-in-healthcare/

 

Jul 15, 2018
Using NLP for Customer Feedback in Automotive, Banking, and More
21:07

Episode Summary: Natural language processing (NLP) has become popular in the past two years as more businesses processes implement this technology in different niches. In inviting our guest today, we want to know specifically which industries, businesses or processes NLP could be leveraged to learn from activity logs.

For instance, we aim to understand how car companies can extract insights from the incident reports they receive from individual users or dealerships, whether it is a report related to manufacturing, service or weather.

In the same manner, how can insights be gleaned from the banking or insurance industries based on activity logs? We speak with the University of Texas’s Dr. Bruce Porter to discover the current and future use-cases of NLP in customer feedback.

 Interested readers can listen to the full interview with Bruce here:

https://www.techemergence.com/using-nlp-customer-feedback-automotive-banking

 

Jul 08, 2018
Can Businesses Use "Emotional" Artificial Intelligence?
25:32

Episode summary: This week on AI in Industry, we speak to Rana el Kaliouby, Co-founder and CEO of Affectiva about how machine vision can be applied to detecting human emotion - and the business value of emotionally aware machines.

Enterprises leveraging cameras today to gain an understanding of customer engagement and emotions will find Rana’s thoughts quite engaging, particularly her predictions about the future of marketing and automotive.

We’ve had guests on our podcast say that the cameras of the future will most likely be set up for their outputs to be interpreted by AI, rather than by humans. Increasingly machine vision technology is being used in sectors like automotive, security, marketing, and heavy industry - machines making sense of data and relaying information to people. Emotional intelligence is an inevitable next step in our symbiotic relationship with machines, an in this interview we explore the trend in depth.

Interested readers can listen to the full interview with Rana here: https://www.techemergence.com/can-businesses-use-emotional-intelligence

 

Jun 30, 2018
Improving Customer Experience with AI, Gaining Quantifiable Insight at Scale
39:39

A myriad of customer service channels exist today, such as social media, email, chat services, call centers, and voice mail. There are so many ways that a customer can interact with a business and it is important to take them all into account.

Customers or prospects who interact via chat may represent just one segment of the audience, while the people that engage via the call center represent another segment of the audience. The same might be said of social media channels like Twitter and Facebook.

Each channel may offer a unique perspective from customers – and may provide unique value for business leaders eager to improve their customer experience. Understanding and addressing all channels of unstructured text feedback is a major focus for natural language processing applications in business – and it’s a major focus for Luminoso.

Luminoso founder Catherine Havasi received her Master’s degree in natural language processing from MIT in 2004, and went on to graduate with a PhD in computer science from Brandeis before returning to MIT as a Research Scientist and Research Affiliate. She founded Luminoso in 2011.

In this article, we ask Catherine about the use cases of NLP for understanding customer voice – and the circumstances where this technology can be most valuable for companies.

Read the full article:

techemergence.com/improving-customer-experience-with-ai-gaining-quantifiable-insight-at-scale

Jun 28, 2018
Better Than Elasticsearch? How Machine Learning is Improving Online Search
26:56

Episode summary: In this episode of AI in Industry, we speak with Khalifeh Al Jadda, Lead Data Scientist at CareerBuilder, about the applications of machine learning in improving a user’s search experience.

Khalifeh also talks about what the future of search might look like and how AI will continue to make the search experience more intuitive (for search engines, platforms, eCommerce stores, and more).

Business leaders listening in will get a sneak peak into the future of online search - and an understanding of how and where improvements in search features could impact their business.

Interested readers can listen to the full interview with Khalifeh here:

https://www.techemergence.com/better-than-elasticsearch-machine-learning-search/

Jun 24, 2018
AI Use-Cases for the Future of Real Estate
27:26

Episode summary: In this episode of AI in Industry, we speak with Andy Terrel, the Chief Data Scientist at REX - Real Estate Exchange Inc., about how AI is being used in the real estate sector today.

Looking ahead ten years into the future, Andy paints a picture of the areas where he believes AI will change the real estate business. Andy explores how marketing in real estate might change in the future with chatbots and conversational interfaces in real estate which are high value per ticket interactions - a process that will likely vary greatly from the chatbot applications we see for smaller B2C purchases (in the fashion sector, eCommerce, etc).

Interested readers can listen to the full interview with Andy here:

https://www.techemergence.com/ai-use-cases-future-real-estate/

Jun 15, 2018
High Performance Computing in Artificial Intelligence Applications with Paul Martino from Bullpen Capital
19:53

Episode summary: Here on the AI in Industry podcast, we’ve heard AI experts explain how high-performance computing (HPC) has enabled everything from machine vision to fraud detection. In this week’s episode, we speak with Paul Martino, Managing Partner at Bullpen Capital, about which industries and AI applications will require high-performance computing most.

Paul also adds some useful tips for business leaders on how to prepare for the coming AI-related developments in hardware and software.

Interested readers can listen to our full interview with Paul here: https://www.techemergence.com/?p=12779&preview=true

 

 

Jun 11, 2018
Machine Learning for Credit Risk - What's Changing, and What Does it Mean?
27:10

Episode summary: In this episode of AI in Industry, we speak with Dr. Sanmay Das from the Washington University in St. Louis about risk prediction and management in industries like banking, insurance and finance.

Sanmay explores how are banks and other financial institutions are improving risk and fraud prevention measures with machine learning. In addition, he explores the ramifications of improved fraud detection in the coming 5 years ahead.

Interested readers can listen to the full interview with Sanmay here: https://www.techemergence.com/machine-learning-for-credit-risk/

Jun 03, 2018
Applications of Machine Vision in Heavy Industry
20:28

Episode summary: In the last two or three years we at TechEmergence have witnessed a definite uptick in AI applications like predictive maintenance and heavy industry. Many exciting business intelligence and sensor data applications are making their way into “stodgy” industries like transportation, oil and gas, and telecom - where machine vision has countless applications.

We had caught up with Massimiliano Versace, CEO of Neurala over 4 years ago in an interview about the ethical implications of AI. In this week’s episode of AI in Industry, Max speaks with us about how machine vision and drones can be used together to automate the process of facilities and heavy asset upkeep. Max walks us through potential applications in telecom and rail transportation and explains where he thinks machine vision has the strongest potential to impact the bottom line.

Business leaders who manage heavy assets or physical infrastructure should find this interview insightful, as Max explains both current and near-future applications for machine vision for maintenance and upkeep.

Interested readers can listen to the full interview with Max here: https://www.techemergence.com/applications-of-machine-vision-in-heavy-industry/

May 18, 2018
Artificial Intelligence for Personalization in Marketing - Current and Future Possibilities
22:05

Episode summary:  In this episode of AI in Industry we speak with Abhi Yadav, the CEO of ZyloTech, a Boston-based customer analytics platform for omni-channel marketing operations. Abhi talks about what's possible now with AI for marketing personalization, and what will be possible in the next 5 years.

Business leaders with an increasing focus on narrower customer targeting will be interested in Abhi’s insights on how technology allows for businesses to reach an “audience of one”.

Interested readers can listen to the full interview with Abhi here:

https://www.techemergence.com/artificial-intelligence-personalization-marketing-current-future-possibilities/

May 13, 2018
Will Artificial Intelligence Become Easier to Use?
21:44

Episode summary: In this week’s episode of AI in Industry we speak with DataRobot CEO Jeremy Achin about the future of AI applications for people without a data science background. We specifically discuss how future AI tools might bypass the complexity of machine learning programming and make intuitive interfaces that function more like today’s everyday software. Our business leader listeners will be interested in Jeremy’s predictions about how the UX for AI-related tools might become more simplified and code-less in the coming 5 years.

Interested readers can listen to the full interview with Jermy here: https://www.techemergence.com/will-artificial-intelligence-become-easier-use/

May 06, 2018
How to Apply AI to an Existing Business with Larry Lafferty
31:19

Episode summary: In this week’s episode of AI in Industry, we speak with Larry Lafferty, the President and CEO of Veloxiti. Larry has been building large AI projects for DARPA and other large private companies for the last 30 years.

In this interview, Larry explains three critical factors to applying artificial intelligence in the enterprise (with insights especially relevant for companies who aren’t very familiar with AI and data science).

AI vendors and business leaders should find the “how to” insights in this interview useful – particularly Larry’s details on organizing data and defining an AI-applicable business problem.

Interested readers can listen to the full interview with Larry here: https://www.techemergence.com/how-to-apply-ai-…h-larry-lafferty/

Apr 29, 2018
Will McGinnis (Predikto) - Predictive Maintenance for Trains and Mobile Heavy Industry
25:08

Episode summary: In the heavy industry sector, the cost of unpredicted repairs or machine failures can be very expensive. For example: A cargo train with an engine failure in will incur costs from it’s own repairs, from the transit required to reach the broken down engine, and with holding up other trains and cargo in the process.

Predictive maintenance has the potential to help businesses assess the condition of vehicles, equipment and parts in order to predict when maintenance should be performed. Using data collected by sensors on machines (including vibration, temperature, and more) heavy industry companies can potentially predict which machines or parts need imminent maintenance and which machines are least likely to breakdown.

In this week’s episode, we speak with Will McGinnis, Chief Scientist of Predikto, a predictive maintenance software provider based in Atlanta. Will speaks with us about predictive maintenance applied for the improvement railways and trains equipment, and how companies in the railway sector can use predictive maintenance to coax out patterns in maintenance schedules and heavy equipment data.

Interested readers can listen to the full interview with Will here:https://www.techemergence.com/will-mcginnis-predikto-predictive-maintenance-trains-mobile-heavy-industry

 

 

Apr 21, 2018
Improving Robot Safety and Capability with Artificial Intelligence - with Rodney Brooks
25:47

Episode summary: In this week’s episode of AI in Industry we speak with Rodney Brooks, Founder and CTO of Rethink Robotics, a collaborative robot manufacturers founded in Boston in 2008. Rodney explores robotic safety an regulations and he also paints a picture of what robots might be capable of in the next five years.

Executives in the logistics and manufacturing sectors considering adopting robots will find Rodney’s insights most valuable.  Rodney explores what applications will move into the realm of robotics and what application won't in the near future and delves into what business executives need to know about human robot collaboration before considering their adoption.

Interested readers can see the full interview with Rodney Brooks from Rethink Robotics here: https://www.techemergence.com/improving-robot-safety-capability-artificial-intelligence-rodney-brooks/

Apr 18, 2018
What's the Value of AI Events and Consulting?
23:14

Episode summary: One of the key challenges that enterprises face in adopting artificial intelligence is finding skilled data science talent; ). Business leaders want to know when it's best to hire AI talent, to "upskill" existing workers, or simply to bring in AI consultants - and the answers aren't always obvious.

In this episode of AI in Industry we speak with Nikolaos Vasiloglou from MLTrain about how AI consulting and AI training events can be used to upgrade an existing team’s skills. Nikolaos also distinguishes the right and wrong circumstances to bring on AI consultants, and shares his tips on how training, upskilling, and consulting can level up an existing company’s AI capabilities.

Listeners can find out  how to set realistic goals for re-training existing teams for new AI skill sets. Lastly, we also explore how AI consultants can support developer and engineering teams to produce fruitful real-world AI applications (without developing unhealthy reliance on outside experts).

Interested readers can also listen to our previous episode of AI in Industry (here) where we look at overcoming the data and talent challenges of AI in life sciences

Interested readers can listen to the full interview with Nikolaos here:https://www.techemergence.com/whats-the-value-of-ai-events-and-consulting/

Apr 14, 2018
Spoken Voice AI Applications in the Smart Home - with Peter Cahill from Voysis
29:11

Episode Summary: Over the last couple of years there has been a definite but small shift from mobile as the primary interface focus for businesses to voice. With home assistant devices like the Amazon Echo and the Google Home becoming more commonplace, we aim to focus on how voice based AI applications are being used by businesses today and what this adoption will look like in the future.  

In this week’s episode of AI in Industry, we speak with Peter Cahill, the founder and CEO of Voysis, a voice AI platform that enables voice-based natural language instruction, search, and discovery. Peter explores areas where voice related AI applications will be used by businesses in B2B and B2C spaces today and what this might look like in five years.  

 Interested readers can see the full interview with Peter Cahill from Voysis here: https://www.techemergence.com/spoken-voice-ai-applications-smart-home-peter-cahill-voysis/

Apr 09, 2018
What Industries Will Adopt Voice-Related AI Applications First?
31:00

In this week’s episode we focus on AI application in the customer service business function, - specifically in the context of call centers. We speak with Ali Azarbayejani, CTO of Cogito based in the Boston area, which works on coaching and providing feedback for call center agents in real time.

We aim to focus on what our readers and business executives can do today with AI in the context of call center applications, and how they can go about seeing measurable impacts over a predetermined period of time.

We speak with Ali about what is possible with analyzing voice in real-time today and what kind of ROI can businesses expect for this application. Lastly we touch-base on what factors will make AI inevitable for some companies in the next two to three years.

Interested readers can see the full interview with Ail here:

https://www.techemergence.com/what-industries-will-adopt-voice-related-ai-applications-first/

 

Apr 01, 2018
Reducing the Friction of AI Adoption in the Enterprise - with Rudina Seseri
27:36

Episode summary: There are many challenges to bringing AI into an enterprise for example the lack of skilled AI talent, or issues around data organization. In this week's episode, we focus on AI adoption in the enterprise from an investor’s perspective.

We expect that founders looking to sell B2B enterprise AI-products and people in enterprises who are looking for the right qualities in an AI firm which would ease integration, would find this episode relatable. We speak with Rudina Seseri from Glasswing Ventures about what are the pain points for AI integration in the enterprise and at the other end of the spectrum, some factors that are aiding AI adoption.

Interested readers can see the full interview with Rudina here:

https://www.techemergence.com/reducing-friction-ai-adoption-enterprise-rudina-seseri/

 

Mar 25, 2018
NLP for eCommerce Search - Current Challenges and Future Potential
26:21

Episode summary: In this week's interview on the AI in Industry podcast, we speak with Amir Konigsberg, the CEO of Twiggle, about the future of product search - and how eCommerce and retail brands can use natural language processing (NLP) to improve their user experience.

Amir explains some of the factors that make eCommerce product search challenging, and the artificial intelligence approaches that can improve it today and within the next five years.

Interested readers can learn more about present and future use-cases for artificial intelligence applications in retail in our full article on that topic.

You can listen to the full interview with Amir Konigsberg from Twiggle here:

https://www.techemergence.com/nlp-for-ecommerce-search-current-challenges-and-future-potential

Mar 18, 2018
Robbie Allen from Automated Insights - The Use-Cases of Natural Language Generation
31:03

Episode Summary: Machine learning (ML) can be used to identify objects and pictures or help steer vehicles, but is not best suited for text-based AI applications says Robbie Allen, founder of Automated Insights.

In this episode of AI in Industry, we speak with Robbie about what is possible in generating text with AI and why rules based processes are a big part of natural language generation (NLG). We also explore which industries are likely to adopt such NLG techniques and in what ways can NLG help in business intelligence applications in the near future.

You can listen to the full interview with Robbie here:

 

Mar 11, 2018
Applying AI to Legal Contracts - What's Possible Now
25:35

Episode summary: This week’s episode explores the current possibilities in applying natural language processing for legal contract review. We speak with Andrew Antos and Nischal Nadhamuni from Klaritylaw, a Boston-based startup focused on using natural language processing (NLP) based information extraction, from non-disclosure agreements (NDAs), in a live setting.

We delve into the current and future roles of AI and lawyers with respect to legal contracts. AI is currently being applied in applications like retroactive analysis and information identification in legal documents. According to Andrew and Nishchal, in the future we will see on-the-fly legal content creation from AI tools and NLP being applied to most commercial contracting. Although, one restraint that AI companies presently face in the legal domain is the lack of access to huge amounts of publicly available data.

You can listen to the full interview with Andrew and Nischal here:

Mar 03, 2018
Artificial Intelligence for Team Communication
24:12

Episode summary: Most NLP applications we hear about involve marketing, customer service, and other customer-facing functions - but that there are NLP-related opportunities in other back-end functions as well.  

In this episode of AI in industry, we speak with Talla's Chief Data Scientist, Byron Galbraith, about how businesses can leverage chatbots or other NLP applications for improving document search for internal company communication. Byron explores what is currently possible using AI to improve search operations using contextual awareness. Byron also paints a vision of what AI-enabled "knowledge sharing" and "knowledge discovery" might look like in the future.

For the full article of this episode, visit: TechEmergence.com/artificial-intelligence-team-communication/

Feb 24, 2018
Artificial Intelligence for Content Marketing and Content Creation
27:18

When we talk about natural language processing (NLP), applications like handling customer service or chatbots which can aid with questions, come to mind. Yet, in recent years, NLP platforms have been increasingly used in content marketing and content production applications.

In this episode of AI in industry, we talk to Tomás Ratia García-Oliveros, the co-founder and CEO founder of Frase.io, a Boston based startup which focuses on NLP problems around content marketing and content creation. Tomas explores how NLP platforms are now able to summarise resources on the web, perform contextual search and language understanding applications related to this domain.

See the full interview article with Tomás Ratia García-Oliveros live at:

www.techemergence.com/artificial-intelligence-content-marketing-content-creation

Feb 16, 2018
Overcoming Challenges in Spoken Voice based Natural Language Processing (NLP) for business use
22:05

In this episode of AI in industry, we speak with Michael Johnson, the director of research and innovation for Interactions llc, in Boston MA. Michael explores the inbound (human to machine) and outbound (machine to human) applications of voice based natural language processing (NLP) and also talks about attaching a timeframe to how soon small and medium enterprises (SMEs) would have access to this technology in a financially sensible manner.

 Although NLP is often associated with chat or text interfaces, voice is important for applications in call centers, mobile phones, smart home devices, and more. In addition, Michael explains that voice involves unique challenges that text does not have to deal with - including background noise and accents, which need to be overcome to deliver a good user experience.

 See the full interview article with Michael Johnston live at:

www.techemergence.com/overcoming-challenges-spoken-voice-based-natural-language-processing-nlp-business-use

Feb 10, 2018
Natural Language Processing - Current Applications and Future Possibilities
47:39

In order to shed more light on the growing applications of natural language processing, we speak with Vlad Sejnoha (CTO of Nuance Communications) about the current and near-term applications of NLP for voice and text across industries.

In this podcast interview, Vlad breaks down real-world NLP use-cases in industries like banking, healthcare, automotive, and customer service.

For the full article of this episode, visit:

TechEmergence.com/natural-language-processing-current-applications-and-future-possibilities

Feb 03, 2018
How Microtasking Helps Optimize AI-Based Search - in Media, eCommerce and More
25:31

This week on AI in Industry we interview Vito Vishnepolsky of Clickworker. Clickworker is a large microtasking marketplace that crowdsources the search optimization work for many of the world's leading search engines.

So how does crowdsourced human work play a role in making sure eCommerce and media searches give users what they want? That's exactly what we explore this week. Vito’s perspective is valuable because he has a finger on the pulse of crowdsourced demand, handing business development for various crowdsourced AI support services - both for tech giants and startups.

Read the full article online at TechEmergence:

TechEmergence.com/how-microtasking-helps-optimize-ai-based-search

Feb 01, 2018
AI for Sales Forecasting - How it Works and Where it Matters
25:55

Sales forecasting is big business. If you can better predict how much of a certain product or service you will sell in a given day, you can better stock inventory, better staff your facilities, and ultimately keep more margin in your business's accounts.

This week on AI in Industry we interview Dr. John-Paul B Clarke, professor at Georgia Tech and co-founder / Chief Scientist at Pace (previously called "Prix"). Dr. Clarke shares details about how sales predictions are done today, and what AI advancements may allow for in helping businesses sell everything from groceries to hotel rooms.

Read the full interview article online at: 

techemergence.com/ai-sales-forecasting-works-matters

Jan 29, 2018
Overcoming the Data and Talent Challenges of AI in Life Sciences
26:24

In this episode of AI in industry, Innoplexus CEO Gunjan Bhardwaj explores how pharma giants are working to overcome two critical challenges with AI: Data, and talent.

Pharmaceutical data is challenging because the same term (say "EGFR") might be referred to as a "protein", a "biomarker", or a "target". Gunjan explores how this kind of relevance and context for data - and how pharma companies may need to hire the talent issues involved with making life sciences and computer sciences teams work together productively.

See the full interview article online at:

techemergence.com/overcoming-data-talent-challenges-ai-life-sciences

 

Jan 24, 2018
Avoiding Common Mistakes in Applying AI to Business Problems - with Jeremy Barnes of Element AI
23:55

This week, AI in Industry features Jeremy Barnes, Chief Architect at Element AI. Jeremy talks about the common mistakes some businesses might make while adopting AI to solve broad business problems. He also sheds light on the problem areas that could raise the market value of businesses through AI adoption, hiring the right talent with the right combination of subject matter expertise and business experience, and the business and technical aspects executives should consider before contemplating the adoption of AI.

For more insights on the B2B applications of AI, go to techemergence.com

Jan 21, 2018
AI Recommendation Engines for Big Purchases - Will You Buy Your Home or Car Using AI?
22:02

This week, AI in Industry features Dr. David Franke, Chief Scientist at Vast. David talks about how AI can work with scarce transaction data to derive meaningful analytics for big purchases, such as cars and houses. He elaborates on how the AI can glean information from user interaction and marketplace data to provide customers with the relevant product fit, deals and recommendations on big purchases. He also discusses the future trends and business benefits for early adopters of AI for purchase recommendations of high-cost items. 

For more insights on this topic, go to www.techemergence.com

 

Jan 14, 2018
The Future of Medical Machine Vision - Possibilities for Diagnostics and More
27:30

This week’s episode covers the medical applications of machine vision for the diagnosis and treatment of cancer. Medical science has integrated AI since the late 90s, and it’s been useful in the fight against cancer. This week’s guest is Dr. Alexandre Le Bouthillier, founder of Imagia. Imagia is a medical imaging company which specializes in using AI and machine learning to detect cancer in its early stages so that oncologists can make quicker, more accurate diagnoses for patients.

AI is a useful  tool in the detection of breast cancer, colon cancer, and lung cancer. It can even detect genetic mutations, something humans certainly cannot. Learn just how important AI has been over the last two decades in developing the medical infrastructure necessary for patients to have a chance at surviving and even curing their cancer.

See the full interview article - with images and audio included - on TechEmergence:

TechEmergence.com/the-future-of-medical-machine-vision-possibilities-for-diagnostics-and-more

Jan 07, 2018
Building and Retaining a Data Science Team
28:50

This week on AI in Industry, we speak with Equifax's Dr. Rajkumar Bondugula about how the dynamics, composition and requirements of the data science team have evolved over the years. Raj also shares valuable insights on how to build a robust data science and machine learning team, use its collective intelligence to solve problems, and retain the team by engaging them with the right problems they expect to solve.

For more insights from AI executives, visit:

TechEmergence.com

Dec 30, 2017
AI for IoT Security - with Dr. Bob Baxley of Bastille
28:47

This week on AI in Industry, we explore IoT security with Bob Baxley (Chief Engineer at Bastille). This includes information on how different IoT security is compared to infosec, the unique challenges IoT security presents (for detecting and scanning wireless network traffic that runs on various protocols and for classifying types of cyberthreats), what the future of IoT security might look like, and how deep learning and machine learning tools can be used to better classify and detect threats and attacks in the cyberspace.

For more insight on the applications of AI in industry, visit:

TechEmergence.com

Dec 24, 2017
AI for Social Influence and Behavior Manipulation with Dr. Charles Isbell
24:35

In this episode of AI in Industry, we explore how artificial intelligence can be use to manipulate human behavior - in gaming and in business. We explore how game designers use psychology and machine learning to drive their own desired outcomes, leaving users to "feel" in control.

Dr. Charles Isbell teaches machine learning at Georgia Tech. He explores the manipulative elements of game design, and how some of the same AI approaches are likely being used at tech giants like Amazon and Facebook. In this episode you learn how businesses leverage the "illusion of choice" with subtly influential AI techniques. Charles also helps us understand which businesses will be most able to use AI to guide user behavior in the years ahead.

For more interviews about the applications of AI in industry, visit:

www.TechEmergence.com

Dec 16, 2017
Ben Goertzel on How Blockchain Might Make AI More Accessible
30:54

If you combine the hype-factor of both "blockchain" and "artificial intelligence" you often get a supernova of jargon. This week on the AI in Industry podcast, we aim to get beyond the hype to discuss how blockchain might make AI more accessible for small and mid-sized businesses in the years ahead. Dr. Ben Goertzel - CEO of SingularityNET - is our guest this week.

For more expert interviews about the business applications of AI, visit:

TechEmergence.com

Dec 09, 2017
Machine Learning with Less Training Data - Approaches and Trends
27:30

Expert systems and machine learning are two ends of a spectrum working to solve similar problems quite differently. One one hand you have if-then scenarios and a logical approach, and on the other you have vast neural networks and a big data approach. Some companies exist to try and bridge the gap between the if-then rule systems and the massive piles of data. They hope to find a middle ground of sorts, one that mitigates their individual disadvantages. One such company is Montreal’s fuzzy.ai.

In this episode, we interview its founder, Evan Prodromou about the state of the middle ground, so-called hybrid systems. The middle ground is an elusive, still mostly theoretical concept, but businesses can take steps to prepare for when it becomes accessible to them. What exactly would a hybrid system provide to businesses in terms of automation? How accessible are they now, and what can businesses do to best integrate them when they’re ready? Find out in this episode of the podcast.

For more interviews about the business applications of AI, visit:

www.TechEmergence.com

Dec 03, 2017
How Chatbots Work, and How They Evolve
26:34

There’s a lot of hype out there about conversational AI. Although according to our guest, we’re nowhere near the day when AI can generate accurate conversations for the average business to integrate into their customer service, chatbots still have practical applications. In this episode, we interview the head of research at Digital Genius, Yoram Bachrach. Yoram succinctly outlines the current applications of chatbots—what they can and can’t do—and details how business can best prepare to automate their customer service.

For more interviews about the applications of AI in industry, visit us online:

www.TechEmergence.com

Nov 27, 2017
Machine Vision for Advertising - Possibilities in Social and Online Media
30:43

How can machine learning help us advertise through social media? In this episode, Thomas Jelonek, CEO of Envision.ai, talks to us about how in the next five years, machine learning might automate the laborious guess-and-check process of finding visual content with which users can engage. Right now, finding images and videos that will best generate engagement is a task reserved for a human. He or she shifts through images and video clips that may work for an audience based on anecdotal evidence and perception of past post success. Learn how, according to Thomas, machine learning could help you save time and money, generate you a better ROI, and build you a larger list with more accurate targeting on social media.

For more interviews with AI experts, visit:

www.TechEmergence.com

Nov 19, 2017
Modeling Biology with Machine Learning - with Turbine.ai's CEO Kristóf Zsolt Szalay
23:24

This episode explores the ways in which artificial intelligence has the potential to revolutionize the field of medicine. This week's guest, Dr. Kristóf Zsolt Szalay speaks to this topic, discussing research that hopes to create automated learning networks and algorithms designed to predict the development of human cells in response to drugs. This technological innovation would make it possible for near-instantaneous simulations to be run, allowing optimal combinations and optimal doses of drugs to be pinpointed and distributed to patients.

For more interviews on the applications and implications of AI in business, visit:

www.TechEmergence.com

Nov 12, 2017
What Chatbots Can Do, and Cannot Do
22:18

In this episode, discover how chatbots and conversational agents can provide you an advantage in the realms of customer support, product, support, lead engagement, and more, and learn the theory behind creating useful chatbots you can use in your own business. Right now, if we intend to find a piece of information or purchase something on the Internet, we might use a search engine that provides us with a list of sites we can browse in order to find ourselves a resolution for that intent. This week’s guest, Chief Scientist at Conversica, Dr. Sid J Reddy, talks about how AI and ML can usher in the next a new era of search software, one that will bring you a faster, more accurate resolution to your intent.

Most importantly, Dr. Reddy discusses how chatbot technology can be integrated into areas such as customer service, product support, and lead engagement. By the end of the episode, listeners will have a better idea of the importance of collecting data and how they can use that data to  to build chatbot templates they can use in multiple domains and applications.

For more interviews on the business applications of AI, visit:

www.TechEmergence.com

Nov 05, 2017
How Can Businesses Get NLP to Work?
23:34

This week on AI in Industry, we speak to Paul Barba (Chief Scientist at Lexalytics) about what how companies are using natural language processing, and what it takes (in terms of expertise, time, and training) to get these systems working. From sentiment analysis to categorization, Paul walks us through interesting and fruitful use-cases and sheds light on the back-end "tweaking" required to keep NLP productive in a changing business environment.

For more interviews on the applications of AI in business, visit:

www.TechEmergence.com

Oct 29, 2017
AI for Theft Prevention and Process Adherence - with Alan O'Herlihy from Everseen
20:50

In this episode, we speak with Alan O'Herlihy, Founder and CEO of Ireland-based Everseen. Alan speaks to us about how machine vision systems can be used to detect theft or mistakes at a checkout counter (including forgetting to scan items, customers intentionally hiding items, and more). Alan not only explains where these technologies are in use today, but he also breaks down some of his own predictions about what these computer vision systems might make possible in the workplace of tomorrow.

For more interviews and use-cases of AI in industry, visit:

TechEmergence.com

Oct 22, 2017
Qrativ's Murali Aravamudan on "What's Possible" for AI in Drug Discovery
26:36

In this episode, we talk to Murali Aravamudan, Founder and CEO of AI-driven drug discovery startup Qrativ, a joint venture by the Mayo Clinic and biotech/data science firm nference. Murali and I discuss the surge of medical information and data in the medical industry, the role of artificial intelligence in developing drugs for treatments to various diseases, and the future of AI in drug discovery.

For more in-depth interviews on the business applications of artificial intelligence, find us online at:

www.TechEmergence.com

Oct 14, 2017
AI in Healthcare IT Security - Why Hospitals are Targets
21:38

In this episode, we talk to Daniel Nigrin, MD, Senior Vice President and CIO at Boston Children’s Hospital. Daniel and I discuss why hackers have come to prey on the healthcare industry, how these hackers benefit from their illicit activities, and what healthcare IT security precautions can be taken to prevent such attacks.

For more interviews on AI applications in business, visit:

www.TechEmergence.com

Oct 08, 2017
NLP for Customer Service - How Does it Work?
34:29

Natural language processing has gained more and more attention with the raise of (or rather, the "fad" of) chatbots. Despite the flurry of press releases from companies about their conversational agents (only a few of which seem to be delivering real business value), few business leaders understand the value of NLP for customer service, sales enablement, or eCommerce.

In this week's episode of AI in Industry we interview Narjes Boufaden, computational linguistics PhD and CEO of Keatext, an NLP company based in Montreal. Narjes explores the possible business applications of NLP - specifically for customer service and customer experience - and she also explains (in layman's terms) how NLP systems are trained and integrated into businesses today.

The ROI on this episode (in my opinion), is a firm understanding of what NLP can and cannot do, and what business applications it can realistically solve today. I was fortunate to meet Narjes in person during my Montreal trip, and I'm glad we were able to bring her on the program shortly thereafter.

For more expert interviews on the business applications of AI, visit:

www.TechEmergence.com

Oct 01, 2017
Computer Vision for Body Language - How it Works and How it Could be Used
26:00

As a human, we can often understand the mood, intention, and future action of another person just by looking at them. We see their posture, their facial expression, where their eyes are focused, and we can get a decent understanding of what they might do next. The problem of computer vision for body language is a much harder problem to solve, but we are indeed making progress.

Our guest this week is Paul Kruszewski, an computer science PhD who's spent nearly the last 20 years focused on 3D modeling and artificial intelligence. Today, he's CEO of Wrnch, a Montreal-based AI company focused on reading and understanding human body language.

Paul explains how advances in 3D modeling and computer vision have allowed researchers to get machines to "understand" the posture, movements, and intentions of human being - and he also helps explore the future applications that this technology might have in security, retail, sports, and more.

For more interviews on the applications of AI in business, visit:

TechEmergence.com

Sep 23, 2017
AI for Cameras and Computer Vision - with Algolux's Allan Benchetrit
29:00

In the future, the vast majority of photos and videos recorded won't be seen and used by humans - they'll be seen and used by machines. This week we interview Allan Benchetrit, CEO at Algolux - a Montreal-based AI company focusing on computational imaging.

If you take an image for a human being in a consumer application (maybe an iPhone app or a recreational DSLR camera), you probably want it to be visually appealing and clear to the human eye.

As it turns out, machines don't need pretty images, they need to do their jobs. If a computer vision system needs to detect road signs, or suspicious people in an airport, or the presence of weeds in a cornfield - it may create images that are ugly to the human eye, but perfectly calibrated for being interpreted by machines for their jobs. As it turns out, this is a complicated AI-related problem itself, and Allan walks us through it.

If your business uses cameras heavily - or may do so in the future - this interview will provide an around-the-corner look at what it takes to create effective computer vision applications.

For more expert interviews about the business applications of artificial intelligence, visit:

www.TechEmergence.com

Sep 17, 2017
Tamr's Eliot Knudsen on the Automation of Procurement
24:45

Procurement isn't usually seen as a "sexy" aspect of a business's operations. Procurement personnel are responsible for sourcing suppliers or vendors, determining criterion of success, negotiating deal terms, and tracking results and deliverables - all of which could be considered "under appreciated" work. This week, Tamr's Eliot Knudsen walks us through the ways that AI is making it's way into the procurement process, and what it means for the future of this job function.

For more executive interviews about the applications and implications of AI, visit:

www.TechEmergence.com

Sep 09, 2017
AI Use-Cases in the CRM - with Bastiaan Janmaat of DataFox
26:56

This week we speak with Bastiaan Janmaat (CEO and co-Founder of DataFox) about the current and future applications of artificial intelligence in the CRM.

No matter what business you're in, there's a high likelihood that managing relationships with customers, wholesalers, suppliers, or affiliates is important to your daily operations. Artificial intelligence is currently being employed to help with automating data entry, automating email and phone reminders, and even prompting salespeople with the right phone scripts in real time.

In addition to covering "what's being done now" - spend the end of the interview asking Bastiaan about his predictions of the most likely AI-for-CRM capabilities that will become commonplace in the next 5 years.

For more AI executive interviews, and insights into current and future AI trends that are shaking up industries, visit:

www.TechEmergence.com

 

Sep 02, 2017
Surviving the Machine Age - Technological Job Loss with Kevin LaGrandeur
25:14

Artificial intelligence is coming - should be worried about our jobs? Well, it depends. Our guest Dr. Kevin LaGrandeur spent the last two years researching the impacts of automation and artificial intelligence on society and the job market. In this interview on AI in Industry, we explore the near future of AI's impact on the world of work, and I ask Kevin some important questions, including:

  • What skills are least "automate-able" in the next decade?
  • What middle class professions have the greatest risk of automation, and what should those professionals be doing now to hedge against job loss?
  • What should business leaders be doing now to prepare for "phasing out" work while still taking care of their employees?

For more interviews with AI executives and researchers (and more insight on applying AI in your organization) - visit us online at:

www.TechEmergence.com

Aug 26, 2017
Might AI Need Standards to Scale? - with Konstantinos Karachalios of the IEEE
28:44

Though we don't think about it on a daily basis - the technologies around us often "work" because of an underlying standard that they depend on. These technologies include: Wifi, ethernet, fax, and much of the internet itself. Do certain AI applications need their own set of standards in order to scale?

Imagine if you needed a new type of cable or input every time you wanted to jack your computer into the wall? Imagine if you needed different hardware to pick up wifi in every location you moved around to? Imagine if all websites had totally different protocols for how they were loaded or served to your computer? If this were the case, it would be extremely challenging for a robust "ecosystem" of internet companies and technologies to emerge, because the technology wouldn't scale or work well at all.

This week we interview Konstantinos Karachalios,‎ Managing Director of the Standards Association at the Institute of Electrical and Electronics Engineers (IEEE). Konstantinos holds a PhD in Physical and previously worked for 25 years at the European Patent Office. He speaks with us this week about the kinds of AI standards that may need to arise in order for AI to be safe and trusted enough to support a business ecosystem.

Konstantinos also speaks to us about some of the current AI standards that IEEE is working on developing currently, and the implications they might have businesses everywhere.

Aug 19, 2017
Predictive Maintenance for Equipment and Machinery - with Predii's Tilak Kasturi
27:40

It would be great if instead of having our car break down - could have them fixed as soon as the underlying problem began. It would be great if instead of having to diagnose a malfunctioning piece of mechanical equipment - would could have the right "fix" presented to us immediately. As it turns out, artificial intelligence may be working its way to accomplish both of those goals in the not-so-distance future.

This week we interview Tilak Katsuri, CEO of Predii, a predictive maintenance AI company based on Palo Alto. Predii focuses on helping service people by using AI and sensor data to prescribe proper repairs. In this episode, Tilak speaks with us about what's currently possible within the world of "predictive maintenance," as well as the possible ramifications of industrial IoT and AI in the next 5 years.

For more interviews about the real-world applications of artificial intelligence in business, visit:

www.TechEmergence.com

Aug 13, 2017
Artificial Intelligence and the Future of Programmatic Advertising
37:21

A huge percentage of digital advertising dollars today go to Google and Facebook, who dominate that sector - and are inevitably central for the future of programmatic advertising. There’s a lot of evidence to suggest that the growth in digital advertising in the last two to three years has gone almost entirely into their coffers. At least for the foreseeable future, Facebook and Google will retain the ability to dominate that space.

The ability to be able to bid for the attention of particular target audiences, whether they’re searching for a specific term, live in a specific place or they like a specific sports team, is something that doesn’t seem to be going away, and seems to be rather efficient, thanks in the large part to Artificial Intelligence.

In this episode we talk to Lior Tasman who is the CEO of PredictiveBid, an Israeli-based predictive advertising optimization start-up. The team focuses on applying AI to some of the bigger issues in programmatic advertising to help draw out more ROI from ads. We discuss some of the challenges of programmatic advertising and what the future of programmatic advertising may look like from an advertiser’s perspective.

For more executive interviews on the applications of AI in Industry, visit:

TechEmergence.com

Aug 06, 2017
AI for Real-Time Personalization - with LiftIgniter's Adam Spector
29:08

The big tech giants, such as Amazon, Google and Netflix, tend to set the stage in a lot of different domains and set public expectations to raise the aggregate tide of consumer experience. Our online experience is somewhat different each time we use these and other sites. This is because many of these tech giants alter their experience user per user in a real time iterative fashion in order to create sticky experiences and to beat their competitors.

In this episode we talk to Adam Spector, the Co-Founder & Chief Business Officer at LiftIgniter, a company which provide a service which modulates website experience per users, for an array of different businesses. Adam and I discuss what the tech giants are doing to customize their business experiences, what data they’re using to continually alter user experience and what industries and sectors might be impacted by this aggregate trend as it moves forward.

See more interviews with AI industry innovators at:

www.TechEmergence.com

Jul 28, 2017
Bringing AI into an Old, Large, Existing Business - with Muriel Serrurier Schepper of Rabobank
28:13

Imagine you work in a large organization with tens of thousands of employees across multiple countries, a business that’s been around for over a hundred years, and all of a sudden you have people in one department who are interested in applying chatbots, colleagues in another department who wish to implement sentiment analysis and still another department that wants to begin using AI for fraud and risk analysis. How do you manage to put all these pieces together?

That is exactly the situation that Muriel Serrurier Schepper found herself in.  Muriel is the Business Consultant Advanced Data Analytics & Artificial Intelligence at Rabobank Digital Bank in Naarden, Netherlands. In this episode, Muriel and I discuss the Artificial Intelligence Center of Excellence at Rabobank, where she manages projects and has connected ad virtual and physical team across the company which is comprised of over 60,000 employees spread across the world.

For more interviews on the applications of AI in industry, visit:

www.TechEmergence.com

Jul 22, 2017
Where is AI Making it's Way into Hospitals? - with Sangeeta Chakraborty of AYASDI
21:11

If you work in healthcare, or in an established business that is looking to implement AI for the first time - then this won't be an interview you'll want to miss.

AYASDI is one of those rare AI startups that has raised over $100MM since it's inception in 2008. This week on the "AI in Industry" podcast, Sangeeta Chakraborty of AYASDI breaks down some of AI's important recent applications in the healthcare field. She also explores how hospitals are "modernizing" their processes and systems to include data science and AI applications - and we pick apart those "modernizing" strategies in a way that makes them applicable to nearly any "stodgy" business or industry that is just beginning to implement AI.

For more interviews, research, and case studies on AI in industry, visit:

www.TechEmergence.com

 

Jul 15, 2017
Marshall Brain on Technological Unemployment and the Role of Man and Machine
26:02

Marshall Brain discusses how wetware (the human brain) is increasingly becoming a part of a bigger system which may in itself be managed by software systems. The roles and relationships of humans and machines are rapidly changing. With the increasing advances in technology, there are fewer and fewer skills or activities that an enterprise needs from human beings, and they only need those until they can be replaced by software or hardware.

For example, computer vision systems are often still not as effective as the human eye, so we still need human vision systems to recognize text or to recognize object placement, and take action accordingly (in a store, warehouse, or other setting). A human can fill that role as a piece of wetware until the software or the hardware catches up. How will man and machine collaborate in the future? We explore these dynamics in depth in this week's interview.

For more interviews and insights from leading thinkers in AI and automation, visit:

www.TechEmergence.com

Jul 08, 2017
Obstacles to Progress in Machine Learning - for NLP, Autonomous Vehicles, and More
21:47

Machine learning currently faces a number of obstacles which prevent it from advancing as quickly as it might. How might these obstacles be overcome and what impact would this have on the machine learning across different industries in the coming decade? In this episode we talk to Dr. Hanie Sedghi, Research Scientist at the Allen Institute for Artificial Intelligence, about the developments in core machine learning technology that need to be made, and that researchers and scientists are working, on to further the application of machine learning in autonomous vehicles. We also touch on some of the impact that might be made if machine learning is able to overcome its own boundaries in terms of computational research, in terms of certain algorithms, and what kind of impact that might have in the arena of autonomous driving and in the realm of natural language processing (NLP).

See more episodes online at:

www.TechEmergence.com

Jul 03, 2017
Machine Learning for Fraud Detection - Modern Applications and Risks
27:44

Fraud attacks have become much more sophisticated. Account takeovers are happening more often. Many security attacks involve multiple methods and unexpected attacks can devastate businesses in just a few days, as we saw with Neiman Marcus and Target. False promotion and abuse is seen not only on social media sites but is also targeted at business. To combat these risks, fraud solutions need to be smarter to keep pace with fraudsters to prevent attacks and react quickly when they do happen. This requires a fast-learning solution with the ability to continually evolve. In this episode we talk to Kevin Lee from Sift Science and examine the shifts in the info security landscape over the past ten or fifteen year. Lee also highlights what new kinds of fraud are now possible and what machine learning solutions are available.

See more episodes at:

www.TechEmergence.com

 

Jun 25, 2017
The Future of AI in Heavy Industry
33:39

Unlike the field of self-driving cars, the fields of construction, mining, agriculture, and other classes of “heavy industry” involve a huge variety of equipment and use-cases that go beyond traveling from A to B. The heavy industry leaders of today are no farther behind automakers in their understanding that AI and automation will be essential for the future of their companies. In this episode, guest Dr. Sam Kherat discusses the areas in heavy industry where AI is currently playing a role in heavy industry, what type of capabilities and functions are automatable, and at what level. He also shines a light on how AI might affect the future of the industry within the next 2-3 years, and in what ways we can expect large equipment to become more autonomous.

Jun 18, 2017
Rebellion Research's Alexander Fleiss - How AI is Eating Finance
27:11

Although machine learning in finance is far from new, it is merely at the cusp of a much wider set of applications (in all segments of finance, from insurance to bookkeeping and beyond). Already machine learning has overhauled so many aspects of the financial landscape, from accounting to trading, and it is destined to have more and more impact as it develops further. Guest Alexander Fleiss and his team at Rebellion Research are developing and using AI which uses quantitative analysis to pick investments. Fleiss discusses the current status of machine learning in the world of finance as well as lesser-known niche applications that don’t make headlines - but do make a big impact on how businesses are run. He then goes on to explore the effects of future innovative applications of AI in the financial domain.

Jun 12, 2017
The Challenges and Opportunities of Healthcare Data - with Remedy Health
20:37

Guests Will Jack and Nikhil Buduma co-founders of Remedy Health Inc discuss the challenges involved in collecting, setting up and structuring data in order to implement AI in healthcare. By the end of this episode, listeners will have gained insight into the challenges of healthcare data systems, and the potential solutions to cleaning and organizing this data for healthcare AI applications.

Jun 05, 2017
How Innovative Healthcare Companies Use AI to Put Patients First
22:32

If there's any industry ripe for disruption by AI and ML applications, it's healthcare. This week, we speak with ElevenTwo Capital's Founder and Managing Partner Shelley Zhuang, whose investment focus (among other spaces) is on innovative healthcare services. In addition to discussion how AI is helping propel genomics, diagnostics, therapeutic treatment, and other innovations, she touches on what the healthcare space might look like in the next 10 years. For healthcare startups looking to break into the healthcare market, Zhuang doesn't pretend to have simple answers; however, she identifies commonalities among companies that have been successful in smart preparation for meeting regulatory and other industry considerations. This interview was recorded live in San Francisco at Re-Work's Machine Intelligence in Autonomous Vehicles Summit in March 2017.

 

May 28, 2017
Prescriptive Analytics Driving the Smart Enterprise with Ann Miura-Ko
21:00

In the last few months, we've had a string of fantastic interviews with investors and have gained a cross-industry picture of what's important for start-ups and emerging trends in the AI and ML space. This week's interview is no exception. Ann Miura-Ko, co-founder and partner at Floodgate, starts with an explanation of the "self-driving enterprise" concept, her functioning idea about AI investing and the future of software in general. Her high-level insights embody an interesting emphasis on the dynamic of human-machine interactions and relationships cross industries, including the constant workflows and interactions of people using software and bolstering the predictive and prescriptive analytics capabilities of that software. While forward-thinking, Miura-Ko also paints a picture of how these synergistic relationships between humans and machines are happening with companies today.

May 21, 2017
Gary Swart on Defensibility and Scale for AI Companies
24:32

Getting an investor's perspective in AI is always a good idea for companies looking to raise money, in terms of understanding of excites VC's, but even more broadly an investor's perspective can point to emerging  factors in how AI is going to impact a particular industry, shining a light on industry developments, including the commonalities that matter for any company, in any industry, leveraging these tools that are increasingly embedded with AI. In this episode we interview Polaris Partners' Gary Swart, who speaks about elements of companies that are laying the right foundations for using AI optimally and making a more defensible, durable company in an increasingly competitive landscape.

May 14, 2017
Deep Learning on Front Line Against New Malware Attacks
23:02

The upsurge of malware and sophisticated attacks continue to keep cybersecurity in the spotlight, but new developments in AI and deep learning offer more advanced solutions to combat security threats. This week, we catch up with Eli David, CTO of Deep Instinct—a company founded in Israel with US headquarters in San Francisco—that applies deep learning to information security. David spoke with us about why and how the deep-learning approach to AI is relevant to the future of cybersecurity.

Companies that are actively building their own security infrastructure, or are in growth mode and know they will eventually need to, should find this interview particularly relevant. David shares his perspective on how and where potential cyberthreats focus their attacks and the resulting ramifications for industries as they look for best ways to respond and prevent attacks.

 

May 07, 2017
Scopely and the Uses of AI and Analytics in Gaming
25:43

One of the most clear insights from our recent consensus in marketing and advertising was that companies who have more digital touch points along the path to conversion—and more conversion in general—have an advantage when applying AI and ML technologies. In this week's episode, Scopely Co-Founder Ankur Bulsara shines a light on this dynamic and describes how gaming companies are taking advantage of digital trails and applying machine learning technologies. We don't cover much gaming on the TechEmergence podcast, so this interview is a bit off the beaten path. Bulsara speaks about how dialed-in and instrumented the mobile gaming environment is and how data is used to leverage higher conversions over time, as well as how Scopely's systems are set in place to ensure success of their business model. We think his insights on how gaming companies leverage higher conversions with (and without) machine learning can serve as an analogy for companies in other industries that are considering how to set in place similar, optimal digital processes over time.

Apr 30, 2017
What Does it Take to Improve Marketing Results with AI?
25:46

In this episode, we speak with Co-founder and CEO Alex Holub of  Vidora, about how AI can be put to work to improve marketing results. Holub touches on the resources needed—time, money, in-house or outside expertise, calibration, and data— in order to leverage AI in a realistic way. It's safe to say that today, some businesses are not yet set up to be leveraging AI, while others should be seriously considering taking the leap to using machine learning. Holub draws some firm lines as to what kinds of businesses are primed to take advantage of AI, and what it takes to flip the switch and make AI a useful and inspired revenue driver in the marketing domain.

Apr 27, 2017
AI Healthcare Applications – and Why Doctors Don't Want to Be Replaced
24:04

I'm always a little shocked when I see how much venture investing goes into the healthcare space, which brings me to the subject of this week's episode: just how the healthcare industry is (and isn't) being impacted by innovations in AI technology. Guest Steve Gullans of Boston-Based Excel Venture Management talks about some of the various healthcare-related ML and AI applications that he sees being brought to light, and touches on which innovations have a better chance of getting blocked and redirected by parties of interest and those that have more promise in being accepted and rolled out sooner. By the end of this episode, listeners will have a more clear picture of practical considerations in healthcare technology adoption, reasons that are often less about quality or potential of the technology and more about clarity on ROI for investors.

Apr 23, 2017
Data-Driven Software and the Future of Enterprise Tech
22:33

At TechEmergence, we like to look around the corner at where AI is impacting industries and how people can make better business decisions based on that information. AI and software is an emerging topic of interest to many companies, and in this episode we get a venture capitalist's perspective on where AI will play a vital and necessary role with real results in software and industry.

Jake Flomenberg, a partner with venture capital firm Accel in Palo Alto, shared his insights on how software can integrate AI in intuitive and valuable ways for users. He cites some of the companies that Accel has invested in to illustrate some of the potential software features that may be introduced to the enterprise in the next five years or so. Flomenberg's insights may be useful for anyone building a business or planning to buy a product or service from a software vendor in the near future. If you're interested in getting other founders' perspectives on the feedback and interest shown by investors in their startups, our AI startup consensus on investor sentiment is a good place to start.

Apr 15, 2017
A VC's Take On Business Process Automations
29:01

In some ways, investors in AI have to do a lot of what we do at TechEmergence, which is sort through marketing fluff and determine what's actually working and what's more of a pipe dream, as well as what's coming up in the next five years that seems inevitable and what's more likely to flop. In this episode we're joined by Li Jiang, a venture capitalist with GSV Capital whom I was connected with through Bootstrap Labs as a pre-event interview — we'll both be at Bootstrap Labs' Applied AI event in San Francisco on May 11. This week, Jiang speaks about the current areas of AI applications that he sees driving value in business, as well as what technologies he believes will make a long-term impact in terms of automation. His insights on where AI automations are generating cost savings and increased efficiency, as well as what roles might be completely replaced or significantly augmented by AI, are useful nuggets for companies who are thinking through some of their own business processes and are eager to identify low-hanging fruit.

Apr 09, 2017
Genetic Algorithms Evolve Simple Solutions Across Industries
24:28

As it turns out, survival of the fittest applies as much to algorithms as it does to amoebas, at least when we're talking about genetic algorithms. We recently interviewed Dr. Jay Perrret, CTO of Aria Networks, a company that uses genetic algorithm-based technology for solving some of industry's toughest problems, from optimization of business networks to pinpointing genetic patterns correlated with specific diseases. Dr. Perrett has been working for years in this domain, testing algorithms that use variations of parameters in order to gradually arrive at a best result, when there's no simple way to program a solution. In this episode, Dr. Perrett discusses how genetic algorithms (GA) work and ways that they can be tested and applied in a business context. He provides two very useful case studies, including a recent example with Facebook that involved planning out an optimal (and massive) data network.

 

Apr 02, 2017
Art of Artificial Intelligence in Marketing Optimization
25:03

Getting beyond the marketing and jargon on the homepage of AI companies and figuring out what's actually happening, what results are being driven in business, is part of our job at TechEmergence. Shaking those answers out of founders is not always easy, but we didn't have to do much shaking with Yohai Sabag, chief data scientist for Optimove, a marketing AI and automation company in Israel. In this episode, he speaks about what humans are needed for in the optimization process, and what facets can be automated or distributed to a machine. Sabag gives an excellent walk-through of how marketers can use the "human-machine feedback loop" to optimize individual campaigns at scale.

 

Mar 26, 2017
Fundamentals of Natural Language Generation in Business Intelligence
33:50

You might be aware that some of the articles online about sports or financial performance of companies are article written by machines; this machine learning-based technology is the burgeoning field of natural language generation (NLG), which aims to create written content as humans would—in context— but at greater speed and scale. Yseop is one such enterprise software company, whose product suite turns data into written insight, explanations, and narrative. In this episode we interview Yseop's Vice President Matthieu Rauscher, who talks about the fundamentals of natural language generation in business, and what conditions need to be in place in order to drive key objectives. Rauscher also addresses the difference between discover-oriented machine learning (ML) and production-level ML, and why different industries might be drawn to one over the other.

Mar 19, 2017
DarkTrace's Justin Fier - Malicious AI and the Dark Side of Data Security
29:35

There is in fact a dark side to AI, although we’re certainly not at the point where we need to fear terminators, but it’s certainly been leveraged toward malicious aims in a business context. In data security, tremendous venture dollars are going into preventing fraud and theft, but this same brand of technology is also being use by the “bad guys” to try and steal that information and break into those systems. In this episode, I speak with Justin Fier, director of cyber intelligence at Dark Trace, who speaks about the malicious uses of AI and how companies like Dark Trace have been forced to fight these “AI assailants”.

Mar 12, 2017
Startup Artificial Intelligence Companies in China
23:13

Most of our recent investor interviews have been Bay area investors, like Accenture and Canvas, and we don't usually get to speak with investors overseas, particularly in Asia. This week, however, we interviewed Tak Lo, a partner with Zeroth.ai, an accelerator program and cohort investing firm based in Hong Kong and focused on startup artificial intelligence (AI) and machine learning (ML) companies. Lo speaks about when he saw AI take off in China and the differences in that rise compared to the U.S. He also gives valuable insight on consumer differences in how the two populations interact with technology, and how these differences in the Asian market drive different business opportunities in China than in the U.S.

Mar 05, 2017
How Data Lakes Support ML in Industry - with Cloudera's Amr Awadallah
29:25

If you're going to apply machine learning (ML) in a business context, you need a lot of data, and algorithms across the board perform better with more recent, rich, and relevant data. Today, there are companies whose entire business models are predicated on helping others make sense of and use of this type of information. In this episode, we speak with the CTO and Co-Founder of one such company—Palo Alto-based Cloudera. CTO Amr Awadallah, PhD, speaks with us this week about where he sees "data lakes" (or "data hubs", Cloudera's preferred term) and warehouses play an important role in ML applications in business. Based on his experiences helping a variety of companies in many countries set up data lakes, Amwadallah is able to distill and communicate these uses in three broad categories that apply across industries as companies look to solve tougher problems and ask more complex questions using unstructured data.

Feb 26, 2017
Machine Learning for Media Monitoring - with Signal Chief Data Scientist
31:00

One facet of business that nearly any industry has in common is the need to stay on top of news in their respective market, including competitor strategies or understanding changes in news related to the field. Media monitoring is a domain that machine learning (ML) is well suited for, with it's ability to coax out headlines, contextual information, and financial data from the seemingly endless stream of social, blog, and other information on the web today. Signal is a company that uses ML specifically for these purposes. In this episode, we speak with Signal Media's Chief Data Scientist and Co-founder Dr. Miguel Martinez, who dives into real business use cases illustrating the use of machine learning for media monitoring across industries.

 

Feb 19, 2017
Tuning Machine Learning Algorithms with Scott Clark
24:51

What does it mean to tune an algorithm, how does it matter in a business context, and what are the approaches being developed today when it comes to tuning algorithms? This week's guest helps us answer these questions and more. CEO and Co-Founder Scott Clark of SigOpt takes time to explain the dynamics of tuning, goes into some of the cutting-edge methods for getting tuning done, and shares advice on how businesses using machine learning algorithms can continue to refine and adjust their parameters in order to glean greater results.

Feb 12, 2017
How to Raise Money for Your AI Startup – with Ben Narasin of Canvas Ventures
30:44

In this episode, recorded live at Canvas Ventures in Portola Valley, I speak with Ben Narasin, a partner with Canvas and an avid venture investor in AI and ML companies, some of which we've interviewed (Crowdflower and Mulesoft), along with many others that we haven't (like Siri). Ben doesn't look for AI to invest in; instead, he looks for companies to invest in, a subtle but important difference in a business world increasingly caught up in the explosion of AI and ML technologies.

From investments in Nuance to more recent one such as Houzz, Narasin has solid ideas as to what makes an investment interesting when AI is involved, what might actually add value to a model with AI, and what's wholly irrelevant when it comes to overall business model. Besides making important distinctions on where investments can make a return and how to raise money for your AI startup, this interview is also chock full of great analogies (give me golden dragons all day long—anyone?)

Feb 05, 2017
How to Learn Machine Learning – an Investor's Perspective
24:24

There’s been lot of hype around AI and ML in business over the past five years. Even among investors exist a lot of misconceptions about using ML in a business context, and how to get up to speed on and grasp and understand leveraging related technologies in industry. Recently, I talked with Benjamin Levy of BootstrapLabs in San Francisco, who I met through an investment banking friend in Boston.

BootstrapLabs invests in Bay area companies, and Levy also travels around the world speaking about investing in AI companies and raising funds for new ventures. In this episode, Levy gives his perspective on what investors and executives get wrong about ML and and AI, and discusses how they can get up to speed on the applications for these technologies and leverage them and related expertise to really make a difference (i.e. increased ROI) in their businesses.

Jan 29, 2017
Machine Learning in Infosecurity
22:50

Uday Veeramachaneni is taking a new approach to machine learning in infosecurity, AKA infosec. Traditionally, infosec has approached predicting attacks in two ways: through a system of hand-designed rules, and through anomaly detection, a technique that detects statistical outliers in the data. The problem with these approaches, Veermachaneni says, is that the signal-to-noise ratio is too low. In this episode, Veermachaneni discusses how his company, PatternEx, is using machine learning to provide more accurate attack prediction. He also discusses the cooperative role of man and machine in building robust AI applications in data security and walks us through a common security attack scenario.

Jan 22, 2017
How to Hire Machine Learning Talent - with HIRED's Parshu Kulkarni
22:51

When it comes to finding an expert on interviewing and finding machine learning (ML) talent, Parshu Kulkarni may just be the guy to ask. Not only is Kulkarni one of a small subsegment of the global population with an advanced degree in data science who has also been hired to work in tech companies like eBay, but he's been on the unique side hiring of ML and AI talent. Today, Kulkarni works full-time as Head of Data Science at Hired, Inc., a giant platform for hiring top talent in tech and other areas. In this episode, he provide an interesting distinction between what individuals with experience in data science look for in potential hires versus those who do not have the tech background tend to look for, and also dives into the supply-and-demand landscape for data scientists now and in the future—an interesting interview for anyone looking to hire or be hired in the ML and AI space.

Jan 15, 2017
How Algorithms Improve Advertising - AI for Marketing Optimization
25:43

In marketing, there are lots of applications in AI and machine learning (ML), from recommendation engines to predictive analytics and beyond. At the company Adgorithms, there are even more ambitious projects underway - like automating the process of marketing altogether by having a machine run and generate ads, or test and spend the marketing budget of a company. Or Shani, CEO of Adgorithms, focuses on the quantitative aspects and optimization of online advertising, using algorithms to improve advertising processes. In this interview, Shani talks about how Adgorithms' smart marketing platform "Albert" meshes with humans’ role in marketing, and also discusses how these roles might change over the next 5 to 10 years as we move towards ever more automated marketing processes.

Jan 08, 2017
Automating White Collar Work - Two Examples and a Look Forward
26:17

Not all knowledge work can be crunched by a program, but there are some hard-to-automate business processes that a select few entities are making an attempt to automate now. Boston-based Rage Frameworks, Inc. is one such company, and in this episode we speak with Senior Vice President (SVP) Joy Dasgupta about specific applications of automation technologies applied to white collar environments. Rage Frameworks has developed intelligent machines that have been able to take over process that, prior to the emergence of AI and automation technologies, would have required thousands of people to accomplish. These developments are a microcosm of what is to come, and the process is not without its ethical considerations (as discussed in a previous interview with Yoshua Bengio). But Dasgupta's insights provide a concrete glimpse into how these processes are being automated in the knowledge workplace today and what that might mean or look like decades from now.

Jan 01, 2017
When and How Will Autonomous Cars be Mainstream?
29:17

This week we speak with CEO and Founder of Nexar Inc., Eran Shir, whose company has created a dashboard app that allows drivers to mount a smartphone, which then collects visual information and other data, such as speed from your accelerometer, in order to help detect and prevent accidents. The app also serves as a way to reconstruct what happens in a collision - a unique solution in a big and untapped market. In this episode, Shir gives his vision of a world where the roads are filled with cyborgs, rather than autonomous robots, i.e. people augmented with new sensory information that trigger notifications, warnings or prompts for safer driving behavior, amongst a network of cloud-connected cars.  He also touches on what the transition might look like in response to the question - when will autonomous cars be mainstream?

Dec 25, 2016
How to Leverage Data Assets for Business - with Kenneth Cukier
26:25

In this episode, we speak with Senior Editor for the Economist in digital and data products and Co-author of "Big Data: A Revolution that Will Transform How We Work, Live and Think", Kenneth Cukier, who speaks on the technologies that underlie big data and make it what it is today. Cukier addresses common misconceptions about machine learning and dives into how companies can catch up with this technology by thinking through, assessing ROI, and making sense of the dynamics of big data. Listen for Cukier's apt analogy in comparing machine learning technology to the dynamics of computing from decades ago.

Dec 22, 2016
How Executives Can Learn Machine Learning
24:23

What are executives missing the boat on and what do they need to think about when it comes to AI and ML? This week, we speak with John Straw, who has had a number of businesses in the UK and US, currently a senior advisor to McKinsey & Co., and who works with a lot of executive teams in terms of finding new applications for AI and finding ROI for those technologies in industry. We speak this week about how executives can get up to speed, what degree of knowledge and in what way they should learn it so they can find opportunities in their own companies. Straw also touches on what he sees as the biggest areas of oversight, in terms of preventing companies from finding those applications that can keep them up to speed with competitors and the big technology players.

Dec 19, 2016
Artificial Intelligence in Stock Trading - Future Trends and Applications
24:37

In many ways, AI and finance are made for each other. Machine learning and other techniques make it easier to identify patterns that might otherwise not be detected by the human eye, and finance is quantitative to begin with so that it’s hard not to find traction. Financial firms have also invested heavily in AI in the past, and more are starting to tap into the financial applications of machine learning (ML) and deep learning. This week, we’re joined by CEO and Co-founder of Kavout Alex Lu, whose company offers AI trading applications for enterprises and individuals. Lu speaks today about the kinds of patterns that traders now have access to in finance, and he gives examples of ways Kavout and other institutions are using artificial intelligence in stock trading to build better and more personalized products and services.

 

Dec 15, 2016
Three Scenarios for the Future of Work in an AI Economy
26:06

Market research and trends is important when discussing AI and business, but it's also worthwhile to contemplate the ethical and social implications further down the line. How will countries deal with potential unemployment problems? How might countries collaborate to hedge against the risks that AI poses to the future of work and other economic facets? A relatively small group is helping people do just that i.e. getting organizations and countries to think through how they could hedge against the grander risks inherent in a world powered by AI.

In this episode, we speak with Jerome Glenn, head of the Millennium Project, an initiative that focuses on research implementing the organizational means, operational priorities, and financing structures necessary to achieve the Millennium Development Goals or (MDGs). Glenn talks about how he gets principalities of the world to bring their big industrial players and the public to talk through possible scenarios that are 30, 40, even 50 years in the future, and about ways we might potentially hedge against risks and make the most of the upsides of AI in a global economy.

Dec 10, 2016
The Future of Advertising Attribution with Machine Learning
20:13

A medium-size business with a $20m marketing budget can run into issues when aiming to track an attribute, what marketing dollars brought in customers, etc. But when you're managing $90B for customers all over the world and working in every conceivable channel, things get all the more complicated. Josh Sutton, global head of Data and AI at Publicis.Sapient, speaks in this episode about the future of advertising attribution with machine learning. Specifically, Sutton discusses how his team of publicists is working on managing, tracking, and determining cohorts and attribution across more channels and numerous clients, and touches on ways that the company is applying ML to make sense of marketing data and spend marketing dollars more effectively.

Dec 08, 2016
Five Year Trends in Medical AI Applications
21:27

I remember reading an article in Scientific American years ago about a poster of a person looking in the direction people sitting in a school dining room, and that this poster would make people sitting in the dining room less likely to litter. This seems like an absurd example of holding people accountable for their actions, but as it turns out, there are a lot more serious consequences to ensuring behavior change through observation, and one area where this matters is medicine.

Today, there’s a major issue with people who don't adhere to their medical regimens, only to relapse or experience more serious symptoms later on. This week's guest, Cory Kidd, CEO of Catalia Health and known for his work at MIT on human-robotic interaction, is working to help solve this problem by developing a robot that adds some of that physical presence and accountability. This is likely one of many novel medical AI applications that we're likely to see roll out in healthcare over the next decade.

Dec 04, 2016
Cogitai's Mark Ring - Going Beyond Reinforcement Learning
20:45

Today's episode is about continual learning, a focus of Cogitai, a company dedicated to building AI's that interact and learn from the real world. Cogitai's Cofound and CEO Mark Ring talks about the differences between supervised and reinforcement, and how Cogitai intends to take reinforcement learning in the direction of continual learning. Ring also touches on where he sees an opportunity for applying continual learning in domains like vehicles, consumer apps, etc., and improving abstract levels of understanding by machines.

 

Dec 01, 2016
Applying Computational Linguistics to Streamline the Legal Landscape
22:47

There’s not that many serial tech entrepreneurs in the legal space, but Gary Sangha is one of them. Sangha is CEO and founder of Lit IQ, which is applying machine learning and computational linguistics to legal documents to help lawyers avoid making drafting mistakes. In this episode, Sangha talks about where this type of software is most useful and legitimate, what the legal landscape in relationship to machine learning may look like in the next few years, and how this technology may apply across industries.

Nov 27, 2016